10.1002/anie.201900692
Angewandte Chemie International Edition
COMMUNICATION
were incubated with different concentrations (20 µM to 1.25 µM)
of cisplatin@NMOF-1 and NMOF-1 (control). PrestoBlue cell
viability assay indicated that cisplatin@NMOF-1 is very toxic with
IC50 ~0.5 µM (Figure 3b,S41-S43). The control experiments with
only NMOF-1 into cells showed no appreciable cytotoxic behavior
thereby confirming the ability of the NMOF-1 as an efficient
payload carrier and delivery vehicle. Further, to study versatility of
NMOF-1 as a delivery vehicle, doxorubicin (DOX) was loaded in
NMOF-1 from THF medium. NMOF-1 showed 4.1 wt% loading of
DOX as confirmed from FT-IR, UV-Vis, TGA and elemental
analysis (Figure S44-S46). PXRD analysis of DOX@NMOF-1
showed the stability of the framework and drastic reduction in CO2
uptake (55.5 cc/g→12.8 cc/g) indicating encapsulation of DOX
inside NMOF-1 (Figure S47,S48). The in-vitro drug release study
in 1xPBS buffer exhibited 99% release of DOX within 48 h (Figure
4b, S49). Efficient payload delivery and corresponding cell death
were also observed upon treating HeLa cells with DOX@NMOF-
1 (Figure 3b) indicating general applicability and versatility of the
delivery vehicle.
Notably, the vesicular morphology and PXRD patterns of
NMOF-1 remained intact in DMEM culture media (Figure S50).
The NMOF-1 showed 3.3% and 18.8% hydrolysis in 1xPBS buffer
and 10% FBS protein containing DMEM culture media after 10
days (Figure S51). NMOF-C12 and NMOF-OMe, synthesized
from the linker 1b and 1c, respectively, decomposed by 0.2% and
27.1%, respectively, in 1xPBS buffer after 10 days (Figure S52).
This result indicated that the aqueous stability of NMOF-1
originated due to the presence of dodecyl chains, possibly by
reducing effective concentration of water molecules near the
inorganic building unit.
In conclusion, synthesis and characterization of a solvent
adaptive reversible shape-shifting luminescent nanoscale MOF
have been successfully demonstrated. The adapted design
principle for making such soft and smart material is based on the
utilization of mixed polar side chains containing bola-amphiphilic
OPE dicarboxylate linker and its self-assembly with ZnII in
solvents of different polarity. This dynamic and nontoxic NMOF
has been exploited for bioimaging. Furthermore, the material has
been exploited for anti-cancer drug loading and delivery in HeLa
cell with micromolar cytotoxicity. This study would open up a path
in designing flexible MOFs based on novel linker toward drug
delivery vehicles and other biomedical applications. Thus, our
findings could help in designing cargo that captures a targeted
molecule and release of it upon external stimuli.
Caliebe for assistance in EXAFS measurement at PETRAIII of
DESY, Helmholtz Association (HGF), (beamline P64) supported
by the DST.
Keywords: OPE• Nanovesicles• Nanoscroll• Inverse-
nanovesicle• Drug delivery
[1]
(a) K. J. Lee, J. H. Lee, S. Jeoung, H. R. Moon, Acc. Chem. Res. 2017,
50, 2684–2692; (b) C. Zhang, B. Wang, W. Li, S. Huang, L. Kong, Z. Li,
L. Li, Nat. Commun. 2017, 8, 1138.
[2]
(a) Y. Li, J. Jin, D. Wang, J. Lv, K. Hou, Y. Liu, C. Chen, Z. Tang, Nano
Research, 2018, 11, 3294 - 3305; (b) T. Simon-Yarza, A. Mielcarek, P.
Couvreur, C. Serre, Adv. Mater. 2018, 30, 1707365; (c) T. Simon-Yarza,
M. Giménez-Marqués, R. Mrimi, A. Mielcarek, R. Gref, P. Horcajada, C.
Serre, P. Couvreur, Angew. Chem. Int. Ed. 2017, 49, 15565–15569; (d)
M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Coord. Chem.
Rev. 2016, 307, 342 –360; (e) T. Baati, L. Njim, F. Neffati, A. Kerkeni,
M. Bouttemi, R. Gref, M. F. Najjar, A. Zakhama, P. Couvreur, C.
Serre, P. Horcajada, Chem. Sci. 2013, 4, 1597–1607; (f) P. Horcajada,
et. al. Nat. Mater. 2010, 9, 172–178.
[3]
[4]
(a) K. Yuan, T. Song, D. Wang, Y. Zou, J. Li, X. Zhang, Z. Tang, W. Hu,
Nanoscale, 2018, 10, 1591-1597; (b) M. Peller, K. Böll, A. Zimpel, S.
Wuttke, Inorg. Chem. Front. 2018, 5, 1760-1779; (c) A. Carné, C.
Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2011, 40, 291–305.
(a) P. Hirschle, T. Preiß, F. Auras, A. Pick, J. Völkner, D. Valdepérez, G.
Witte, W. J. Parak, J. O. Rädler, S. Wuttke, CrystEngComm, 2016, 18,
4359-4368; (b) C. He, K. Lu, W. Lin, J. Am. Chem. Soc. 2014, 136,
12253–12256; (c) J. D. Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44,
957-968;
[5]
(a) S. Wuttke, M. Lismont, A. Escudero, B. Rungtaweevoranit, W. J.
Parak, Biomaterials, 2017, 123, 172-183; (b) B. Illes, P. Hirschle, S.
Baenert, V. Cauda, S. Wuttke, H. Engelke, Chem. Mater. 2017, 29,
8042-8046; (c) R. Roder, T. Prei, P. Hirschle, B. Steinborn, A. Zimpel,
M. Hohn, J. O. Radler, T. Bein, E. Wagner, S. Wuttke, U. Lachelt.
J. Am. Chem. Soc. 2017, 139, 2359-2368; (d) P. Horcajada, et. al. Nat.
Mater. 2010, 9, 172–178.
[6]
[7]
(a) J. Cui, N. Gao, C. Wang, W. Zhu, J. Li, H. Wang, P. Seidel, B. J.
Ravoo, G. Li, Nanoscale, 2014, 6, 11995-12001; (b) H. Xu, F. Liu, Y. Cui,
B. Chen, G. Quian, Chem. Commun. 2011, 47, 3153–3155.
(a) M. M. Modena, P. Hirschle, S. Wuttke, T. P. Burg, Small, 2018, 14,
1800826; (b) C. Kong, H. Du, L. Chen, B. Chen, Energy Environ. Sci.
2017, 10, 1812-1819.
[8]
[9]
P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G.
Frey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232–1268.
(a) S. Roy, D. Samanta, P. Kumar, T. K. Maji, Chem. Commun. 2018, 54,
275-278; (b) D. Samanta, P. Verma, S. Roy, T. K. Maji, ACS Appl. Mater.
Interfaces, 2018, 10, 23140 – 23146; (c) S. Roy, V. M. Suresh, T. K. Maji,
Chem. Sci. 2016, 7, 2251-2256; (d) V. M. Suresh, S. J. George, T. K.
Maji, Adv. Funct. Mater. 2013, 23, 5585–5590.
[10] (a) W. Schrimpf, J. Jiang, Z. Ji, P. Hirschle, D. C. Lamb, O. M. Yaghi, S.
Wuttke, Nature Commun. 2018, 9, 1647; (b) R. Röder, T. Preiβ, P.
Hirschle, B. Steinborn, A. Zimpel, M. Höhn, J. O. Rädler, T. Bein, E.
Wagner, S. Wuttke, U. Lächelt, J. Am. Chem. Soc. 2017, 139,
2359−2368. (c) T. Hidalgo, M. Giménez-Marqués, E. Bellido, J. Avila, M.
C. Asensio, F. Salles, M. V. Lozano, M. Guillevic, R. Simón-Vázquez, A.
González-Fernández, C. Serre, M. J. Alonso, P. Horcajada, Sci. Rep.
2017, 7, 43099.
Acknowledgements
TKM is grateful to the DST, India (Project No. MR-2015/001019;
TRC-DST/C.14.10/16-2724), and JNCASR for funding. TKM also
acknowledges Life science research, education and training at
JNCASR (BT/INF/22/SP27679/2018). We thank Dr. W. A.
This article is protected by copyright. All rights reserved.