C O M M U N I C A T I O N S
20, 891–908. (d) Nicole, L.; Boissie`re, C.; Grosso, D.; Quach, A.; Sanchez,
C. J. Mater. Chem. 2005, 15, 3598–3627.
the polycondensation of 1 alone, should facilitate charge hopping
between the organic bridging groups, leading to photocurrent
generation observed using the TOF method. In contrast, an
absorption band of the polycrystalline solid of 1 exhibited a red
shift in the UV-vis spectrum, and the fluorescence spectrum
was similar to that of the 2-propanol solution of 1. In the crystal
consisting of the uncondensed precursor, the π-conjugation
length of the precursor molecule may be extended due to the
increased planarity, whereas intermolecular interactions and
parallel π-stacking appear to be suppressed in the crystal lattice,
which may be the reason for the lack of charge conduction.
(2) (a) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am.
Chem. Soc. 1999, 121, 9611–9614. (b) Melde, B. J.; Holland, B. T.;
Blanford, C. F.; Stein, A. Chem. Mater. 1999, 11, 3302–3308. (c) Asefa,
T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867–
871. (d) Yoshina-Ishii, C.; Asefa, T.; Coombs, N.; MacLachlan, M. J.; Ozin,
G. A. Chem. Commun. 1999, 2539–2540. (e) Inagaki, S.; Guan, S.; Ohsuna,
T.; Terasaki, O. Nature 2002, 416, 304–307. (f) Kuroki, M.; Asefa, T.;
Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am.
Chem. Soc. 2002, 124, 13886–13895. (g) Kapoor, M. P.; Yang, Q.; Inagaki,
S. J. Am. Chem. Soc. 2002, 124, 15176–15177. (h) Sayari, A.; Wang, W.
J. Am. Chem. Soc. 2005, 127, 12194–12195. (i) Cornelius, M.; Hoffmann,
F.; Fro¨ba, M. Chem. Mater. 2005, 17, 6674–6678. (j) Xia, Y.; Wang, W.;
Mokaya, R. J. Am. Chem. Soc. 2005, 127, 790–798. (k) Olkhovyk, O.;
Jaroniec, M. J. Am. Chem. Soc. 2005, 127, 60–61.
(3) (a) Peng, H.; Tang, J.; Yang, L.; Pang, J.; Ashbaugh, H. S.; Brinker, C. J.;
Yang, Z.; Lu, Y. J. Am. Chem. Soc. 2006, 128, 5304–5305. (b) Cornelius,
M.; Hoffmann, F.; Ufer, B.; Behrens, P.; Fro¨ba, M. J. Mater. Chem. 2008,
18, 2587–2592. (c) Minoofar, P. N.; Dunn, B. S.; Zink, J. I. J. Am. Chem.
Soc. 2005, 127, 2656–2665. (d) Johansson, E.; Zink, J. I. J. Am. Chem.
Soc. 2007, 129, 14437–14443. (e) Maegawa, Y.; Goto, Y.; Inagaki, S.;
Shimada, T. Tetrahedron Lett. 2006, 47, 6957–6960. (f) Goto, Y.;
Mizoshita, N.; Ohtani, O.; Okada, T.; Shimada, T.; Tani, T.; Inagaki, S.
Chem. Mater. 2008, 20, 4495–4498. (g) Whitnall, W.; Cademartiri, L.; Ozin,
G. A. J. Am. Chem. Soc. 2007, 129, 15644–15649. (h) Mizoshita, N.; Goto,
Y.; Kapoor, M. P.; Shimada, T.; Tani, T.; Inagaki, S. Chem.sEur. J. 2009,
15, 219–226. (i) Mizoshita, N.; Goto, Y.; Tani, T.; Inagaki, S. AdV. Funct.
Mater. 2008, 18, 3699–3705. (j) Wahab, M. A.; Sudhakar, S.; Teo, E.;
Sellinger, A. Chem. Mater. 2008, 20, 1855–1861. (k) Nguyen, T. P.;
Hesemann, P.; Gaveau, P.; Moreau, J. J. E. J. Mater. Chem. 2009, 19,
4164–4171.
Figure 4. UV-vis (left) and fluorescence spectra (right, excited at λ ) 320
nm) of the organosilica and organosilane materials: (A, E) 1-Brij76-F; (B, F)
1-F; (C, G) neat precursor 1 (polycrystalline solid); (D, H) 2-propanol solution
of 1 (5 × 10-6 M).
(4) (a) Tani, T.; Mizoshita, N.; Inagaki, S. J. Mater. Chem. 2009, 19, 4451–
4456. (b) Inagaki, S.; Ohtani, O.; Goto, Y.; Okamoto, K.; Ikai, M.;
Yamanaka, K.-i.; Tani, T.; Okada, T. Angew. Chem., Int. Ed. 2009, 48,
4042–4046.
(5) Yang, Q.; Liu, J.; Zhang, L.; Li, C. J. Mater. Chem. 2009, 19, 1945–1955.
(6) (a) Schu¨th, F. Chem. Mater. 2001, 13, 3184–3195. (b) Yang, P.; Zhao, D.;
Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 1999, 11,
2813–2826. (c) Yamauchi, Y.; Takai, A.; Komatsu, M.; Sawada, M.;
Ohsuna, T.; Kuroda, K. Chem. Mater. 2008, 20, 1004–1011. (d) Neyshtadt,
S.; Kalina, M.; Frey, G. L. AdV. Mater. 2008, 20, 2541–2546. (e) Aprile,
C.; Teruel, L.; Alvaro, M.; Garcia, H. J. Am. Chem. Soc. 2009, 131, 1342–
1343. (f) Kong, L.; Chen, H.; Hua, W.; Zhang, S.; Chen, J. Chem. Commun.
2008, 4977–4979. (g) Li, X.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y.
J. Am. Chem. Soc. 2007, 129, 4538–4539. (h) Armatas, G. S.; Kanatzidis,
M. G. Nature 2006, 441, 1122–1125. (i) Warren, S. C.; Messina, L. C.;
Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.;
Wiesner, U. Science 2008, 320, 1748–1752. (j) Snaith, H. J.; Gra¨tzel, M.
AdV. Mater. 2007, 19, 3643–3647.
(7) (a) Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man, M. W. C.; Chorro,
C.; Le`re-Porte, J.-P.; Sauvajol, J.-L. Chem. Mater. 1994, 6, 640–649. (b)
de Morais, T. D.; Chaput, F.; Boilot, J.-P.; Lahlil, K.; Darracq, B.; Le´vy,
Y. AdV. Mater. Opt. Electron. 2000, 10, 69–79. (c) Dautel, O. J.; Wantz,
G.; Almairac, R.; Flot, D.; Hirsch, L.; Le`re-Porte, J.-P.; Pameix, J.-P.;
Serein-Spirau, F.; Vignau, L.; Moreau, J. J. E. J. Am. Chem. Soc. 2006,
128, 4892–4901. (d) Peng, H.; Lu, Y. AdV. Mater. 2008, 20, 797–800. (e)
Yang, L.; Peng, H.; Huang, K.; Mague, J. T.; Li, H.; Lu, Y. AdV. Funct.
Mater. 2008, 18, 1526–1535.
In conclusion, mesostructured organosilica hybrids with elec-
troactive phenylenevinylene bridges were successfully obtained by
surfactant-templated polycondensation of a three-armed organosi-
lane precursor. Hole transport in the pore walls of the mesostruc-
tured organosilica was achieved, and the hole mobilities were on
the order of 10-5 cm2 V-1 s-1. The present results broaden the
potential application of mesostructured organosilica materials in
novel photocatalytic and photovoltaic systems, where the meso-
porous structure with large surface and interfacial areas is greatly
advantageous to promote the transfer of mass, charge, and energy
in the mesopores or at the framework-mesopore interface. In the
future, we hope to increase the hole mobilities in the pore walls by
enhancing the molecular-scale ordering of the densely embedded
π-conjugated bridges, because well-stacked OPV molecules are
reported to exhibit quite high carrier mobilities on the order of 10-1
cm2 V-1 s-1 in organic field effect transistors.11
(8) (a) Coakley, K. M.; McGehee, M. D. Appl. Phys. Lett. 2003, 83, 3380–
3382. (b) Sun, B.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3, 961–
963. (c) Ravirajan, P.; Haque, S. A.; Durrant, J. R.; Poplavskyy, D.; Bradley,
D. D. C.; Nelson, J. J. Appl. Phys. 2004, 95, 1473–1480. (d) Yan, H.; Lee,
P.; Armstrong, N. R.; Graham, A.; Evmenenko, G. A.; Dutta, P.; Marks,
T. J. J. Am. Chem. Soc. 2005, 127, 3172–3183.
Supporting Information Available: Complete ref 10a, experimental
details, and additional data on infrared spectra, nitrogen adsorption-
desorption isotherm, transient photocurrents, X-ray diffraction, solid
state NMR, and TGA analysis. This material is available free of charge
(9) Extraction of the template was performed after exposure to vapor of
ammonia aqueous solution. See Supporting Information.
(10) (a) Huang, Y.-F.; et al. AdV. Funct. Mater. 2007, 17, 2902–2910. (b) Bu¨tting,
W.; Lebedev, E.; Karg, S.; Dittrich, T.; Petrova-Koch, V.; Schwo¨rer, M.
Proc. SPIE 1998, 3281, 257–265. (c) Gailberger, M.; Ba¨ssler, H. Phys.
ReV. B 1991, 44, 8643–8651.
(11) Yasuda, T.; Saito, M.; Nakamura, H.; Tsutsui, T. Appl. Phys. Lett. 2006,
89, 182108.
References
(1) (a) Hunks, W. A.; Ozin, G. A. J. Mater. Chem. 2005, 15, 3716–3724. (b)
Hoffmann, F.; Cornelius, M.; Morell, J.; Fro¨ba, M. Angew. Chem., Int.
Ed. 2006, 45, 3216–3251. (c) Fujita, S.; Inagaki, S. Chem. Mater. 2008,
JA9050263
9
J. AM. CHEM. SOC. VOL. 131, NO. 40, 2009 14227