Published on Web 09/11/2009
A New Model for the Presentation of Tumor-Associated
Antigens and the Quest for an Anticancer Vaccine: A Solution
to the Synthesis Challenge via Ring-Closing Metathesis
Insik Jeon,† Dongjoo Lee,† Isaac J. Krauss,† and Samuel J. Danishefsky*,†,‡
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York
AVenue, New York, New York 10065, and Department of Chemistry, Columbia UniVersity,
HaVemeyer Hall, 3000 Broadway, New York, New York 10027
Received June 26, 2009; E-mail: s-danishefsky@ski.mskcc.org
Abstract: Fully synthetic, carbohydrate-based antitumor vaccine candidates have been synthesized in highly
clustered modes. Multiple copies of tumor-associated carbohydrate antigens, Tn and STn, were assembled
on a single cyclic peptide scaffold in a highly convergent manner. Ring-closing metathesis-mediated
incorporation of an internal cross-linker was also demonstrated. In particular, this rigidified cross-linked
construct would enhance a cluster-recognizing antibody response by retaining an appropriate distance
between glycans attached to the peptide platform. Details of the design and synthesis of highly clustered
antigens are described herein.
Introduction
tumor-associated antigens are presented to the immune system
as glycoconjugates appended to immunogenic carrier molecules
Our laboratory is seeking the development of novel, fully
synthetic carbohydrate-based vaccines for the treatment of
cancer. This research program is based on the finding that
malignantly transformed cells often exhibit significant alteration
in the nature and quantity of carbohydrates presented on their
cell surfaces, either as glycosphingolipids or as glycoproteins.1
Presumably, when properly introduced to the immune system,
a tumor-associated carbohydrate-based antigen could set into
motion an exploitable immune response, leading to the genera-
tion of antibodies which would selectively bind to and hopefully
eliminate those tumor cells which overexpress the carbohydrates
in question. We are certainly not alone in this area. In particular,
impressive advances of carbohydrate-based anticancer vaccines
have been reported by Boons,2 Kunz,3 and Schmidt.4 The
viability of this carbohydrate vaccine concept has been con-
firmed experimentally in our laboratory. Thus, when these
(such as KLH carrier protein)5 and coadministered with an
immunological adjuvant (such as QS21),6 a carbohydrate-
specific antibody response may be induced. A number of
complex, fully synthetic carbohydrate-based constructs, syn-
thesized in our laboratories, have shown significant promise in
preclinical, and even clinical settings.7 In designing a carbohydrate-
based vaccine construct, it may be of considerable value to consider
the way in which the antigen is displayed in its natural environment,
i.e., on the surface of the transformed cell, to more directly mimic
this natural setting in the context of the vaccine.
(5) (a) Helling, F.; Shang, A.; Calves, M.; Zhang, S. L.; Ren, S. L.; Yu,
R. K.; Oettgen, H. F.; Livingston, P. O. Cancer Res. 1994, 54, 197–
203. (b) Helling, F.; Zhang, S.; Shang, A.; Adluri, S.; Calves, M.;
Koganty, R.; Longenecker, B. M.; Yao, T. J.; Oettgen, H. F.;
Livingston, P. O. Cancer Res. 1995, 55, 2783–2788.
(6) (a) Kensil, C. R.; Patel, U.; Lennick, M.; Marciani, D. J. Immunol.
1991, 146, 431–437. (b) Marciani, D. J.; Press, J. B.; Reynolds, R. C.;
Pathak, A. K.; Pathak, V. L.; Gundy, E.; Farmer, J. T.; Koratich, M. S.;
May, R. D. Vaccine 2000, 18, 3141–3151. (c) Kim, S.-K.; Ragupathi,
G.; Musselli, C.; Choi, S. J.; Park, Y. S.; Livingston, P. O. Vaccine
1999, 18, 597–603. (d) Kim, S.-K.; Ragupathi, G.; Cappello, S.; Kagan,
E. P.; Livingston, O. Vaccine 2000, 19, 530–537.
† Sloan-Kettering Institute for Cancer Research.
‡ Columbia University.
(1) (a) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed. 2000, 39,
836–863. (b) Livingston, P. O.; Zhang, S. Cancer Immunol.
Immunother. 1997, 45, 1–9. (c) Livingston, P. O.; Ragupathi, G.
Cancer Immunol. Immunother. 1997, 45, 10–19. (d) Toyokuni, T.;
Singhal, A. K. Chem. Soc. ReV. 1995, 231–242. (e) Hakomori, S. I.
AdV. Exp. Med. Biol. 2001, 491, 369–402.
(7) (a) Ragupathi, G.; Park, T. K.; Zhang, S. L.; Kim, I. J.; Graber, L.;
Adluri, S.; Lloyd, K. O.; Danishefsky, S. J.; Livingston, P. O. Angew.
Chem., Int. Ed. 1997, 36, 125–128. (b) Slovin, S. F.; Ragupathi, G.;
Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann,
W. G.; Fazzari, M.; Dantis, L.; Olkiewicz, K.; Lloyd, K. O.;
Livingston, P. O.; Danishefsky, S. J.; Scher, H. I. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 5710–5715. (c) Gilewski, T.; Ragupathi, G.;
Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.; Bencsath, K. P.;
Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.; Houghton, A. N.;
Livingston, P. O.; Danishefsky, S. J. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 3270–3275. (d) Krug, L. M.; Ragupathi, G.; Hood, C.; Kris,
M. G.; Miller, V. A.; Allen, J. R.; Keding, S. J.; Danishefsky, S. J.;
Gomez, J.; Tyson, L.; Pizzo, B.; Baez, V.; Livingston, P. O. Clin.
Cancer Res. 2004, 10, 6094–6100. (e) Sabbatini, P. J.; Kudryashov,
V.; Ragupathi, G.; Danishefsky, S. J.; Livingston, P. O.; Bornmann,
W.; Spassova, M.; Zatorski, A.; Spriggs, D.; Aghajanian, C.; Soignet,
S.; Peyton, M.; O’Flaherty, C.; Curtin, J.; Lloyd, K. O. Int. J. Cancer.
2000, 87, 79–85.
(2) (a) Ingale, S.; Wolfert, M. A.; Gaekwad, J.; Buskas, T.; Boons, G.-J.
Nat. Chem. Biol. 2007, 3, 663–667. (b) Buskas, T.; Ingale, S.; Boons,
G.-J. Angew. Chem., Int. Ed. 2005, 44, 5985–5988.
(3) (a) Kunz, H.; Dziadek, S.; Wittrock, S.; Becker, T. ACS Symp. Ser.
2008, 989, 293–310. (b) Westerlind, U.; Hobel, A.; Gaidzik, N.;
Schmitt, E.; Kunz, H. Angew. Chem., Int. Ed. 2008, 47, 7551–7556.
(c) Wittrock, S.; Becker, T.; Kunz, H. Angew. Chem., Int. Ed. 2007,
46, 5226–5230. (d) Dziadek, S.; Brocke, C.; Kunz, H. Chem.sEur.
J. 2004, 10, 4150–4162. (e) Sprengard, U.; Schudok, M.; Schmidt,
W.; Kretzschmar, G.; Kunz, H. Angew. Chem., Int. Ed. 1996, 35, 321–
324.
(4) (a) Hermans, I. F.; Silk, J. D.; Gileadi, U.; Salio, M.; Mathew, B.;
Ritter, G.; Schmidt, R.; Harris, A. L.; Old, L.; Cerundolo, V.
J. Immunol. 2003, 171, 5140–5147. (b) Schmidt, R. R.; Castro-
Palomino, J. C.; Retz, O. Pure Appl. Chem. 1999, 71, 729–744.
9
10.1021/ja9052625 CCC: $40.75 2009 American Chemical Society
J. AM. CHEM. SOC. 2009, 131, 14337–14344 14337