Thirupathi and Kim
JOCArticle
SCHEME 1
SCHEME 2
R-amido sulfones catalyzed by montmorillonite K-10 give
the unexpected 3-(1-arylsulfonylalkyl)indoles.7 Moreover
3-(1-arylsulfonylalkyl)indoles have further scope for various
synthetic transformations.8
agents,17 suitable building blocks for generating dendrimers,18
and substrates for theoretical19 and biological20 studies. While
many methods have been reported for the preparation of
symmetrical triaryl methanes,21 the synthesis of unsymmetrical
derivatives is far less studied.22-24 We describe here a broad
scope of InBr3-catalyzed Friedel-Crafts alkylations that allow
the selective preparation of structurally diverse triaryl
methanes through sequential reactions with same or different
electron-rich aromatic compounds (Scheme 2; Table 1).
In recent years the utility of indium salts as Lewis acids in
organic synthesis has received a great deal of attention due to
the relatively low toxicity, stability in air and water, and
strong tolerance to oxygen- and nitrogen-containing sub-
strates.9 The application as Lewis acid catalyst to funda-
mental reactions such as Diels-Alder,10 Friedel-Crafts,11
Mukaiyama aldol,12 and Sakurai-Hosomi allylation reac-
tions13 has been extensively investigated.14 In continuation
of the development of useful synthetic methodology for C-C
bond-forming reactions,15 we report herein an efficient
InBr3-catalyzed Friedel-Crafts alkylation of heteroaro-
matic or electron-rich aromatic compounds with R-amido
sulfones. The products undergo further Friedel-Crafts al-
kylation with heteroaromatic or electron-rich aromatic com-
pounds giving rise to triaryl methanes.
Result and Discussion
We have carried out the reaction of R-amido sulfone 4 with
heteroaromatic indole 8 in CH2Cl2 in the presence of molec-
ular iodine that produces the desired 3-(1-arylsulfonylalkyl)-
indole in 58% yield (entry 1). In the absence of any catalyst
no product could be detected (entry 2). Then the Lewis acids
such as ZrOCl2 8H2O, Rh(acac)3, Co(acac)3, In(acac)3, and
3
Triaryl methanes display interesting properties and have
received a great deal of attention as leuco dyes,16 photochromic
InBr3 were screened (entries 3-7). InBr3 (10 mol %) is found
to be the most effective catalyst (entry 7). The effect of
various solvents also has been studied. CH2Cl2 is found to
be the solvent of choice in terms of yield and reaction time
(entry 12).
(7) Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. 2006, 8,
4093.
(8) (a) Shaikh, R. R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre
Angew. Chem., Int. Ed. 2008, 47, 8707. (b) Petrini, M.; Shaikh, R. R.
Tetrahedron Lett. 2008, 49, 5645. (c) Ballini, R.; Palmieri, A.; Petrini, M.;
Shaikh, R. R. Adv. Synth. Catal. 2008, 350, 129. (d) Palmieri, A.; Petrini, M.;
Torregiani, E. Tetrahedron Lett. 2007, 48, 5653.
(9) (a) Frost, C. G.; Chauhan, K. K. J. Chem. Soc., Perkin Trans. 1 2000,
3015. (b) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Curr. Org.
Chem. 2003, 7, 1661. (c) Frost, C. G.; Hartley, J. P. Mini-Rev. Org. Chem.
2004, 1, 1. (d) Zhang, Z.-H. Synlett 2005, 711.
(10) (a) Teo, Y.-C.; Loh, T.-P. Org. Lett. 2005, 7, 2539. (b) Babu, G.;
Perumal, P. T. Tetrahedron Lett. 1998, 39, 3225.
(11) Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron Lett. 1998, 39, 6291.
(12) Loh, T.-P.; Wei, L.-L. Tetrahedron Lett. 1998, 39, 323.
On the basis of the optimized reaction conditions, the scope
of the Friedel-Crafts alkylation reaction is evaluated and the
results are outlined in Table 2. The R-amido sulfone (R =
CO2Et, Ar = Ph, R1 = Ph) is reacted with a variety of indoles
(11a-e) to give the Friedel-Crafts alkylation products in
good yield. The methyl group at the 2-position of indoles
(entry 3 and 6) gives less yield than in case of the reaction of
entry 1 because of the steric hindrance exerted by the methyl
group. The reactions of 5-methoxy indole (entry 4) or methyl
(13) (a) Friestad, G. K.; Korapala, C. S.; Ding, H. J. Org. Chem. 2006, 71,
281. (b) Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Eur. J. Org. Chem. 2002,
1578.
(18) Baker, L. A.; Sun, L.; Crooks, R. M. Bull. Korean Chem. Soc. 2002,
23, 647.
(19) (a) Baptista, M. S.; Indig, G. L. J. Phys. Chem. B 1998, 102, 4678.
(b) Terrier, M.; Boubaker, T.; Xiao, L.; Farrell, P. G. J. Org. Chem. 1992, 57,
3924.
(20) (a) Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004, 47,
3897. (b) Wainwright, M.; Phoenix, D.; Burrow, A. S. M.; Waring, J.
J. Chemother. 1999, 11, 61. (c) Al-Qawasmeh, R. A.; Lee, Y.; Cao, M.-Y.;
Gu, X.; Vassilakos, A.; Wright, J. A.; Young, A. Bioorg. Med. Chem. Lett.
2004, 14, 347.
(21) (a) Hoffmann, M.; Hampel, N.; Kanzian, T.; Mayr, H. Angew.
Chem. 2004, 116, 5518. Angew. Chem., Int. Ed. 2004, 43, 5402. (b) Shanmuga,
P.; Varma, L. Indian J. Chem., Sect. B 2001, 40, 1258. (c) Zhang, Z.-H.; Yang,
F.; Li, T.-S.; Fu, C.-G. Synth. Commun. 1997, 27, 3823. (d) Pindur, U.; Flo,
C. J. Heterocycl. Chem. 1989, 26, 1563. (e) Casiraghi, G.; Casnati, G.;
Cornia, M.; Sartori, G.; Ungaro, R. J. Chem. Soc., Perkin Trans. 1 1974,
2077. (f ) Snyder, H. R.; Konecky, M. S. J. Am. Chem. Soc. 1958, 80, 4388.
(g) Ungnade, H. E.; Crandall, E. W. J. Am. Chem. Soc. 1949, 71, 2209.
(22) Muthyala, R.; Katrizky, A. R.; Lan, X. Dyes Pigm. 1994, 25, 303.
(23) (a) Das, S. K.; Shagufta; Panda, G. Tetrahedron Lett. 2005, 46, 3097.
(b) Burmester, A.; Stegmann, H. B. Synthesis 1981, 125. (c) Pratt, E. F.;
Green, L. Q. J. Am. Chem. Soc. 1953, 75, 275. (d) Katrizky, A. R.; Toader, D.
J. Org. Chem. 1997, 62, 4137. (e) Katrizky, A. R.; Gupta, V.; Garot, C.;
Stevens, C. V.; Gordeev, M. F. Heterocycles 1994, 38. (f ) Katrizky, A. R.;
Lan, X.; Lam, J. M. Chem. Ber. 1991, 124, 1809.
(14) (a) Teo, Y.-U.; Goh, J.-D.; Loh, T.-P. Org. Lett. 2005, 7, 2743.
(b) Lu, J.; Ji, S.-J.; Teo, Y.-C.; Loh, T.-P. Org. Lett. 2005, 7, 159. (c) Marshall,
J. A.; Hinkle, K. W. J. Org. Chem. 1995, 60, 1920. (d) Harada, S.; Handa, S.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365.
(e) Yanada, R.; Obika, S.; Kobayashi, Y.; Inokuma, T.; Oyama, M.;
Yanada, K.; Takemoto, Y. Adv. Synth. Catal. 2005, 347, 1632. (f ) Yanada,
R.; Obika, S.; Oyama, M.; Takemoto, Y. Org. Lett. 2004, 6, 2825. (g) Dobbs,
A. P.; Guesne’, S. J. J.; Martinovic, S.; Coles, S. J.; Hursthouse, M. B. J. Org.
Chem. 2003, 68, 7880. (h) Onishi, Y.; Ogawa, D.; Yasuda, M.; Baba, A.
J. Am. Chem. Soc. 2002, 124, 13690. (i) Cho, Y. S.; Kim, H. Y.; Cha, J. H.;
Pae, A. N.; Koh, H. Y.; Choi, J. H.; Chang, M. H. Org. Lett. 2002, 4, 2025.
( j) Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem.
2001, 66, 7741.
(15) (a) Kim, S. S.; Song, D. H. Eur. J. Org. Chem. 2005, 1777. (b) Kim,
S. S.; Kwak, J. M. Tetrahedron 2006, 62, 49. (c) Kim, S. S.; Lee, S. H.; Kwak,
J. M. Tetrahedron: Asymmetry 2006, 17, 1165. (d) Kim, S. S.; George, S. C.;
Kim, S. H. Bull. Korean Chem. Soc. 2007, 28, 2431. (e) Kadam, S. T.; Kim,
S. S. Catal. Commun. 2008, 9, 1342. (f ) Anjoy, M.; Kim, S. S. Tetrahedron
2008, 64, 5509. (g) Kadam, S. T.; Kim, S. S. Appl. Organomet. Chem. 2009,
23, 119. (h) Rajagopal, G.; Kim, S. S. Tetrahedron 2009, 65, 4351.
(i) Thirupathi, P.; Kim, S. S. Tetrahedron 2009, 65, 5168.
(16) Muthyala R. In Chemistry and Applications of Leuco Dyes; Katrizky,
A. R., Sabongi, G. J., Eds.; Plenum: New York, 1997.
(17) (a) Duxbury, D. F. Chem. Rev. 1993, 93, 381. (b) Aldagin R.
Photochroism: Molecules and Systems; DOrr, H., Bouas- Laurent, H., Eds.;
Elsevier: London, UK, 1990.
(24) (a) Esquivias, J.; Arrayas, R. G.; Carretero, J. C. Angew. Chem., Int.
Ed. 2006, 45, 629. (b) Lin, S.; Lu, X. J. Org. Chem. 2007, 72, 9757.
7756 J. Org. Chem. Vol. 74, No. 20, 2009