Figure 1. Approaches to the enantioselective synthesis of syn-R-
vinyl-β-hydroxy esters 3 and imides 5.
Figure 2. Anticipated versus observed outcome of hydroboration
of allenoate 2 with borane 1R and subsequent reaction with
benzaldehyde.
imides 5 can be obtained by using enantioselective aldol
reactions of chiral crotonate imides (Figure 1). Evans’
chiral N-acyl oxazolidinones10 are widely applied for this
purpose,1 but other methods include use of Oppolzer’s
chiral sultam11 and Crimmins’ chiral oxazolidinethione
reagents.12 Here we report the development of an enan-
tio- and diastereoselective synthesis of syn-β-hydroxy-
R-vinyl carboxylate esters 3 via aldol reactions of alde-
hydes with (Z)-dienolborinate Z-(O)-8a that is generated
in situ from the hydroboration of allenyl ester 2 with
10-trimethylsilyl-9-borabycyclo[3.3.2]decane (1R, also known
as 10-TMS-9-BBD-H, and as the Soderquist borane).13,14
Density functional theory (DFT) calculations indicate
that Z-(O)-8a is generated by a kinetically controlled 1,4-
hydroboration reaction pathway.
monosubstituted allenes with the Soderquist borane 1,15
and were interested in extending these efforts to the
hydroboration of allenecarboxylic ester 2 (Figure 2). Based
on previous results,15 we were hopeful that the hydrobora-
tion reaction of 2 would occur on the terminal allene
double bond opposite to the ester moiety, leading directly
to (Z)-γ-(ethoxycarbonyl)allylborane Z-(C)-7a. Further,
it was anticipated that the reaction of allylborane Z-(C)-7a
with aldehydes such as benzaldehyde would result in an
enantioselective synthesis of anti-3a. However, this reac-
tion sequence provided syn-β-hydroxy-R-vinyl ester 3a as a
single diastereoisomer (dr >40:1) in 81% ee and in 77%
isolated yield. (See Supporting Information (SI) for stereo-
chemical assignments). 1H NMR analysis of the intermedi-
ate formed in the hydroboration step revealed the presence
of a single (Z)-dienolborinate, Z-(O)-8a, and not the
expected allylborane Z-(C)-7a (Figure 2). Based on this
insight, the formation of syn-β-hydroxy-R-vinyl carboxylic
ester3acan be rationalizedby analdol reaction ofZ-(O)-8a
with benzaldehyde via the chairlike transition state TS-1.
The optimization of several reaction variables is sum-
marized in Table 1. The use of Et2O or toluene instead
of CH2Cl2 as a reaction solvent was detrimental to both
the yield of 3a and overall reaction enantioselectivity
(entries 1À3). Increasing the reaction concentration and
the reaction time led to an increased yield of 3a, with
essentially identical results being obtained if the reactions
were performed at 0.25 or 0.5 M (entries 4, 5). However,
when the less reactive cyclohexanecarboxaldehyde was
used, 3b was obtained in 64% and 80% yield when the
reaction was performed at 0.25 or 0.5 M (entries 6,7).
The results of reductive aldol reactions of 2 with sever-
al representative aromatic, aliphatic, R,β-unsaturated, and
heteroaromatic aldehydes are presented in Scheme 1. These
reactions provided 3aÀg with >40:1 d.r. in 68À91%
We have reported studies of enantioselective allylbora-
tion reactions of reagents generated by hydroboration of
(4) (a) Wallner, O. A.; Szabo, K. J. Org. Lett. 2002, 4, 1563. (b) Wang,
Z.; Zha, Z.; Zhou, C. Org. Lett. 2002, 4, 1683. (c) Wallner, O. A.; Szabo,
K. J. J. Org. Chem. 2003, 68, 2934. (d) Wallner, O. A.; Szabo, K. J. Org.
Lett. 2004, 6, 1829.
(5) Gosmini, C.; Rollin, Y.; Perichon, J.; Wakselman, C.; Tordeux,
M.; Marival, L. Tetrahedron 1997, 53, 6027.
(6) (a) Sebelius, S.; Wallner, O. A.; Szabo, K. J. Org. Lett. 2003, 5,
3065. (b) Sebelius, S.; Szabo, K. J. Eur. J. Org. Chem. 2005, 2539.
(7) (a) Hertler, W. R.; Reddy, G. S.; Sogah, D. Y. J. Org. Chem. 1988,
53, 3532. (b) Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 2002, 67, 426. (c)
Bellassoued, M.; Grugier, J.; Lensen, N.; Catherine, A. J. Org. Chem. 2002,
67, 5611. (d) Otaka, A.; Yukimasa, A.; Watanabe, J.; Sasaki, Y.; Oishi, S.;
Tamamura, H.; Fujii, N. Chem. Commun. 2003, 1834. (e) Bazan-Tejeda, B.;
Bluet, G.; Broussal, G.; Campagne, J.-M. Chem.;Eur. J. 2006, 12, 8358.
(8) Ramachandran, P. V.; Nicponski, D.; Kim, B. Org. Lett. 2013, 15,
1398.
(9) (a) Nelsen, S. F.; Teasley, M. F.; Kapp, D. L.; Wilson, M. R.
J. Org. Chem. 1984, 49, 1845. (b) Hudlicky, T.; Natchus, M. G.; Kwart,
L. D.; Colwell, B. L. J. Org. Chem. 1985, 50, 4300. (c) Orsini, F.; Leccioli,
C. Tetrahedron: Asymmetry 1997, 8, 4011.
(10) Evans, D. A.; Sjogren, E. B.; Bartroli, J.; Dow, R. L. Tetrahedron
Lett. 1986, 27, 4957.
(11) (a) Tomooka, K.; Nagasawa, A.; Wei, S.-Y.; Nakai, T. Tetra-
hedron Lett. 1996, 37, 8899. (b) Ciampini, M.; Perlmutter, P.; Watson, K.
Tetrahedron: Asymmetry 2007, 18, 243.
(12) Crimmins, M. T.; Tabet, E. A. J. Org. Chem. 2001, 66, 4012.
ꢀ
(13) (a) Gonzalez, A. Z.; Roman, J. G.; Gonzalez, E.; Martinez, J.;
Medina, J. R.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2008, 130,
9218. (b) Soderquist, J. A.; Matos, K.; Burgos, C. H.; Lai, C.; Vaquer, J.;
Medina, J. R.; Huang, S. D. ACS Symp. Ser. 2001, 783, 176.
(14) Shibasaki has reported a catalytic enantioselective reductive
aldol reaction of allenic esters with aromatic ketones: Zhao, D.; Oisaki,
K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440.
(15) (a) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R. J. Am.
Chem. Soc. 2009, 131, 14174. (b) Kister, J.; Nuhant, P.; Lira, R.; Sorg,
A.; Roush, W. R. Org. Lett. 2011, 13, 1868. (c) Nuhant, P.; Kister, J.;
Lira, R.; Sorg, A.; Roush, W. R. Tetrahedron 2011, 67, 6497.
Org. Lett., Vol. 15, No. 21, 2013
5437