Medjahdi et al.
JOCArticle
other hand, one of the most direct and reliable methods for
the asymmetric synthesis of amine derivatives is the addition
of an organometallic reagent (mainly organomagnesium,7
organolithium,8 organozinc9 and organoindium10 derivatives)
to the CdN bond of enantiopure N-sulfinylimines. In this
context, N-tert-butylsulfinyl derivatives11 have found high
applicability in synthesis as electrophiles because both en-
antiomers are accessible in large-scale processes12 and be-
cause the chiral auxiliary is easily removed under acidic
conditions.8b In addition, practical processes for recycling
the tert-butylsulfinyl group upon deprotection of N-tert-
butylsulfinylamines have also been reported.13 We described
recently10a the stereoselective allylation of N-tert-butylsul-
finyl aldimines with allylindium species14 which can be
generated in the presence of the imine from allylic bromides
and indium metal under mild reaction conditions and exhibit
high tolerance to a wide range of functional groups in many
solvents.15 The resulting enantiopure N-tert-butylsulfinyl
homoallylamines were easily oxidized to give a diastereo-
meric mixture of the corresponding N-tert-butylsulfonyl(2-
aminoalkyl)oxiranes, which upon treatment under basic
conditions led to cis- and trans-pyrrolidin-3-ols.16 We report
here a full account of our studies of the base-induced
cyclization of (2-aminoalkyl)oxirane derivatives of type I
which, depending on the reaction conditions, could undergo
a 4-exo-tet or a 5-endo-tet ring closure, leading to the
corresponding 2-(hydroxymethyl)azetidine II or 3-hydroxy-
pyrrolidine derivatives III, respectively (Scheme 1). There
are only two examples in the literature of 4-exo-tet ring
closure in aminooxiranes of type I. One is the thermal
SCHEME 1. Base-Induced Cyclization Pathways of (2-Amino-
alkyl)oxirane Derivatives
decomposition of 5-aryl-2-methyl-5-methoxy-4-(cyclohexyl-
amino)-1,2-epoxypentan-3-one boron trifluoride complexes
leading to the corresponding azetidinone,17 and the other one
is the cyclization of N-tosyloxiraneethylamines, which upon
treatment with aqueous sodium hydroxide afforded either
2-(hydroxymethyl)azetidine or 3-hydroxylpyrrolidine deriva-
tives, depending on the location of a pentamethylene sub-
stitution in the chain connecting the nitrogen with the oxirane
ring.18
Results and Discussion
N-tert-Butylsulfinyl amines 2 were prepared with high
both chemical yields and diastereoselectivities by the reac-
tion of different N-tert-butylsulfinyl aldimines 1 with allyl
bromide and indium powder in THF at 60 °C (Table 1).10a
For (RS)-aldimines, the nucleophilic attack takes place
almost exclusively at the Si face of the imino group and,
logically, at the Re face for (SS)-enantiomers. The sense of
the stereoinduction has been explained by a chairlike model
in which the metal is chelated both by the oxygen and the
nitrogen of the imine moiety.10a In this way, homoallylamine
derivatives 2 are accessible in enantiomerically pure form
after column chromatography since the reaction products
of the indium-mediated allylation are diastereomers. The
oxidation of compounds 2 with 3 equiv of m-chloroperben-
zoic acid (m-CPBA) in dichloromethane at room tempera-
ture yielded N-tert-butylsulfonyl(2-aminoalkyl)oxiranes 3 in
almost quantitative yields (Table 1). The oxidation of
the sulfinyl group to the corresponding sulfonyl group
(t-BuSO2 or Bus) took place fairly rapidly. Subsequent
epoxidation under these reaction conditions occurred with-
out any stereoselection in spite of the presence of a stereo-
genic center in the molecule (a ca. 1:1 diastereomeric mixture
was always obtained). All attempts to separate diasteroi-
somers 3 (column chromatography, silica gel, hexane/ethyl
acetate) failed.16
We initially explored the base-induced cyclization of the
diastereomeric mixture of (2-aminoalkyl)oxiranes (2R*,20S)-
3d (derived from the aldimine of benzaldehyde and (RS)-N-
tert-butylsulfinyl amine). After some experimentation, we
found that the treatment of the crude reaction mixture of
(2R*,20S)-3d (without purification after the oxidation step,
that means that m-CPBA and m-CBA are present along with
the diastereomeric mixture of epoxides 3d) with potassium
carbonate in N,N-dimethylformamide (DMF) at 100 °C
for 24 h led, with total conversion, to a mixture of pyrroli-
din-3-ol derivatives (5S)-4d and (5S)-5d, which were easily
separated by column chromatography (Table 2, entry 1).16
The pyrrolidin-3-ols (5S)-4d (cis-isomer) and (5S)-5d (trans-
isomer) are formed through a disfavored 5-endo-tet ring
(8) (a) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268. (b)
Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883. (c) Davis,
F. A.; Melamed, J. Y.; Sharik, S. S. J. Org. Chem. 2006, 71, 8761.
(9) (a) Chemla, F.; Ferreira, F. J. Org. Chem. 2004, 69, 8244. (b) Chemla,
F.; Ferreira, F. Synlett 2004, 983. (c) Ferreira, F.; Audouin, M.; Chemla, F.
Chem.;Eur. J. 2005, 11, 5269. (d) Chemla, F.; Ferreira, F. Synlett 2006,
2613. (e) Sun, X.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2006, 8, 4979. (f)
Kolodney, G.; Sklute, G.; Perrone, S.; Knochel, P.; Marek, I. Angew. Chem.,
Int. Ed. 2007, 46, 9291. (g) Chemla, F.; Ferreira, F.; Gaucher, X.; Palais, L.
ꢀ
Synthesis 2007, 1235. (h) Voituriez, A.; Perez-Luna, A.; Ferreira, F.; Botuha,
C.; Chemla, F. Org. Lett. 2009, 11, 931.
(10) (a) Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 2004, 15, 3823. (b)
Wang, Z.-Q.; Feng, C.-Q.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007,
129, 5336. (c) Sun, X.-W.; Liu, M.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2008, 10,
ꢀ
ꢀ
1259. (d) Gonzalez-Gomez, J. C.; Foubelo, F.; Yus, M. Synlett 2008, 2777.
(11) For reviews, see: (a) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc.
Rev. 1998, 27, 13. (b) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res.
2002, 35, 984. (c) Ellman, J. A. Pure Appl. Chem. 2003, 75, 39. (d) Zhou, P.;
Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003. (e) Morton, D.;
Stockman, R. A. Tetrahedron 2006, 62, 8869. (f) Lin, G.-Q.; Xu, M.-H.;
Zhong, Y.-W.; Sun, X.-W. Acc. Chem. Res. 2008, 41, 831. (g) Ferreira, F.;
ꢀ
Botuha, C.; Chemla, F.; Perez-Luna, A. Chem. Soc. Rev. 2009, 38, 1162.
(12) (a) Weix, D. J.; Ellman, J. A. Org. Lett. 2003, 5, 1317. (b) Weix, D. J.;
Ellman, J. A. Org. Synth. 2005, 82, 157.
(13) (a) Wakayama, M.; Ellman, J. A. J. Org. Chem. 2009, 74, 2646. (b)
Aggarwal, V. K.; Barbero, N.; McGarrigle, E. M.; Mickle, G.; Navas, R.;
ꢀ
Suarez, J. R.; Unthank, M. G.; Yar, M. Tetrahedron Lett. 2009, 50, 3482.
(14) (a) Cooper, I. R.; Grigg, R.; MacLachlan, W. S.; Thornton-Pett, M.;
Sridharan, V. Chem. Commun. 2002, 1372. (b) Vilaivan, T.; Winotapan, C.;
Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org. Chem. 2005, 70, 3464. (c)
Tan, K. L.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46, 1315. For
reviews, see: (d) Nair, V.; Ros, S.; Jayan, N. C.; Pillai, B. S. Tetrahedron 2005,
61, 2725. (e) Marshall, J. A. J. Org. Chem. 2007, 72, 8153. (f) Kargbo, R. B.;
Cook, G. R. Curr. Org. Chem. 2007, 11, 1287.
(15) For reviews, see: (a) Cintas, P. Synlett 1995, 1087. (b) Li, C.-J.
ꢀ
Tetrahedron 1996, 52, 5643. (c) Laine, D. Synlett 1999, 1331. (d) Chauhan, K.
K.; Frost, C. G. J. Chem. Soc., Perkin Trans. 1 2000, 3015. (e) Ranu, B. C.
Eur. J. Org. Chem. 2000, 2347. (f) Podlech, J.; Maier, T. C. Synthesis 2003,
633. (g) Nair, V.; Ros, S.; Jayan, N. C.; Pillai, B. S. Tetrahedron 2004, 60,
1959.
(17) Zvonok, A. M.; Kuz’menok, N. M.; Stanishevskii, L. S. Khim.
Geterotsikl. Soedin. 1988, 307; Chem. Abstr. 1988, 109, 230662.
(18) Moulines, J.; Bats, J.-P.; Hautefaye, P.; Nuhrich, A.; Lamidey,
A.-M. Tetrahedron Lett. 1993, 34, 2315.
ꢀ
(16) For a preliminary report, see: Medjahdi, M.; Gonzalez-Gomez,
ꢀ
J. C.; Foubelo, F.; Yus, M. Heterocycles 2008, 76, 569.
7860 J. Org. Chem. Vol. 74, No. 20, 2009