5740
J. McNulty, P. Das / Tetrahedron Letters 50 (2009) 5737–5740
8. McNulty, J.; Das, P. Eur. J. Org. Chem. 2009, 4031–4035.
under conditions where competing homo-aldol or Cannizaro dis-
proportionation reactions might be anticipated. Further studies
on the mechanism of this simple, chemoselective polyene synthesis
and applications on the reactions of other trialklylphosphine-de-
rived semi-stabilized ylides in aqueous media are under underway.
9. (a) Dambacher, J.; Zhao, W.; El-Batta, A.; Anness, R.; Jiang, C.; Bergdahl, M.
Tetrahedron Lett. 2005, 46, 4473–4477; (b) Wu, J.; Zhang, D.; Wei, S. Synth.
Commun. 2005, 35, 1213–1222; (c) Orsini, F.; Sello, G.; Fumagalli, T. Synlett
2006, 1717–1718; (d) Thiemann, T.; Watanabe, M.; Tanaka, Y.; Mataka, S. New
J. Chem. 2006, 30, 359–369; (e) El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.;
Cooksy, A. L.; Bergdahl, M. J. Org. Chem. 2007, 72, 5244–5259; (f) Molander, G.
A.; Oliveira, R. A. Tetrahedron Lett. 2008, 49, 1266; (g) Tiwari, S.; Kumar, A.
Chem. Commun. 2008, 4445–4447.
10. (a) Hwang, J. J.; Lin, R. L.; Shieh, R. L.; Jwo, J. J. J. Mol. Catal. A: Chem. 1999, 142,
125–139; (b) Wu, J.; Li, D.; Zhang, D. Synth. Commun. 2005, 35, 2543–2551; (c)
Busafi, S. A.; Rawahi, W. A. Indian J. Chem., Sect. B 2007, 46, 370–374.
11. Dunne, E. C.; Coyne, E. J.; Crowley, P. B.; Gilheany, D. G. Tetrahedron Lett. 2002,
43, 2449–2453.
Acknowledgments
We thank NSERC, Cytec Canada Inc. and McMaster University
for financial support of this work.
12. Representative procedure: Synthesis of allyl-triethylphosphonium-bromide:
Into a flame-dried flask was added triethylphosphine (1 mL, 6.80 mmol) in
dry dichloromethane (6.8 mL) under argon at 0 °C. To this was added allyl
References and notes
1. Anastas, P. T.; Warner, J. C. Green Chemistry; Oxford University Press: Oxford, 1998.
2. (a)Green Reaction Media for Organic Synthesis; Kochi, M., Ed.; Blackwell: Oxford,
2002; (b) Li, C. J. Chem. Rev. 2005, 105, 3095–3165; (c) Lindstrom, U. M. Chem.
Rev. 2002, 102, 2751–2772; (d) Lindstrom, U. M.; Anderson, F. Angew. Chem.,
Int. Ed. 2006, 45, 548–551.
3. (a) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816–7817; (b)
Grieco, P. A.; Garner, P.; He, Z. Tetrahedron Lett. 1983, 24, 1897–1900.
4. (a) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2005, 44, 3275–3279; (b) Nicolaou, K. C.; Xu, H.;
Wartmann, M. Angew. Chem., Int. Ed. 2005, 44, 756–761.
bromide (589 lL, 6.80 mmol) via syringe. The solution was warmed to room
temperature and stirred for 50 min. The solvent was evaporated under
vacuum to yield the title compound in 99% yield (2.2 g) as white solid. 1H
NMR (200 MHz, CDCl3): d 1.17 (dt, JPH = 19.3 Hz, JHH = 7.3 Hz, 9H); 2.38 (m,
6H); 3.36 (dd, JPH = 16.8 Hz, JHH = 8.4 Hz, 2H); 5.2–5.8 (m, 3H); 13C NMR
(50 MHz, CDCl3): d 6.0; 12.1 (d, JPC = 48.2 Hz); 24.0 (d, JPC = 46.6 Hz); 123.9
(d, JPC = 12.9 Hz); 124.4 (d, JPC = 11.6 Hz); 31P-NMR (80 MHz, CDCl3): 36.8;
HRES MS (M+)+ calcd. for C9H20P: 159.1306, found 159.1303.General
procedure for Tables
1 and 2: Synthesis of 5e: Into a flame-dried flask,
containing a magnetic stirring bar, was weighed allyl-triethylphosphonium
bromide (238 mg, 1 mmol) and distilled water (0.4 mL) was added to make a
2.5 M solution. The contents of the flask were stirred for 15 min at room
temperature whereupon powdered NaOH (160 mg, 4.0 mmol) was added
slowly. After 2 min 3,4,5-trimethoxybenzaldehyde (196.2 mg, 1 mmol) was
added slowly to the reaction flask. The contents of the flask were stirred
vigorously at 70 °C for 1 h. The oil bath was removed and the flask was left
to attain room temperature. Water (5 mL) was added to the reaction
mixture and the contents of the flask were stirred for 10 min. The resulting
mixture was extracted with dichloromethane (3 ꢀ 15 mL). The combined
organic layers were dried (MgSO4), filtered, and concentrated. The product
was purified over a short silica gel column (35% ethyl acetate in hexane) to
yield the title compound 5e, 186 mg, (85%) as yellow semi-solid. 1H-NMR
(600 MHz, CDCl3): d 3.83 (s, 3H); 3.85 (s, 6H); 5.14 (d, JHH = 10.8 Hz, 1H);
5.31 (d, JHH = 17.4 Hz, 1H); 6.47 (m, 2H); 6.61 (s, 2H); 6.68 (dd, JHH = 10.2 Hz,
16.2 Hz, 1H); 13C-NMR (50 MHz, CDCl3): d 56.0; 60.9; 103.4; 117.5; 129.1,
130.5; 132.8; 133.1; 137.0; 153.3; HRCI MS (M+) calcd. for C13H16O3:
220.1099, found: 220.1104.
5. (a) Han, A. H.; Kim, M. S.; Jeong, Y. H.; Lee, S. K.; Seo, E. K. Chem. Pharm. Bull.
2005, 53, 1466–1468; (b) Pereira, A. R.; Cabezas, J. A. J. Org. Chem. 2005, 70,
2594–2597; (c) Moreira, J. A.; McElfresh, J. S.; Millar, J. G. J. Chem. Ecol. 2006, 32,
169–194; (d) de Figueiredo, R. M.; Berner, R.; Julis, J.; Liu, T.; Turp, D.;
Christmann, M. J. Org. Chem. 2007, 72, 640–642.
6. (a) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2007, 72, 4293–4305; (b)
Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis;
Wiley-VCH: Weinheim, 2002; (c) Rappaport, Z.. In The Chemistry of Dienes and
Polyenes; Wiley: New York, 1997; Vol. 1.
7. (a) Takeda, T. Modern Carbonyl Olefination; Wiley-VCH: Weinheim, 2004; (b) Vedejs,
E.; Peterson, M. J. Top. Stereochem. 1994, 21, 1–157; (c) Vedejs, E.; Fan, H. W. J. Org.
Chem. 1984, 49, 210–212; (d) Tamura, R.; Kato, M.; Saegusa, K.; Kakihana, M.; Oda,
D. J. Org. Chem. 1987, 52, 4121–4124; (e) Tamura, R.; Saegusa, K.; Kakihana, M.; Oda,
D. J. Org. Chem. 1988, 53, 2723–2728; (f) Schlosser, M.; Schaub, B. J. Am. Chem. Soc.
1982, 104, 5821–5823; (g) Blade-Font, A.; Vander Werf, C. A.; McEwen, W. E. J. Am.
Chem. Soc. 1960, 82, 2396–2397; (h) Habrant, D.; Stengel, B.; Meunier, S.;
Miokowski, C. Chem. Eur. J. 2007, 13, 5433–5440; (i) Cahiez, G.; Habiak, V.; Gager,
O. Org. Lett. 2008, 10, 2389–2392.