Organic Letters
Letter
(2) (a) McCormick, J. L.; McKee, T. C.; Cardellina, J. H., II; Leid,
M.; Boyd, M. R. Cytotoxic Triterpenes from a Marine Sponge,
Stelletta sp. J. Nat. Prod. 1996, 59, 1047. (b) McKee, T. C.; Bokesch,
H. R.; McCormick, J. L.; Rashid, M. A.; Spielvogel, D.; Gustafson, K.
R.; Alavanja, M. M.; Cardellina, J. H.; Boyd, M. R. Isolation and
Characterization of New Anti-HIV and Cytotoxic Leads from Plants,
Marine, and Microbial Organisms. J. Nat. Prod. 1997, 60, 431.
(3) (a) Webb, M. R.; Addie, M. S.; Crawforth, C. M.; Dale, J. W.;
Franci, X.; Pizzonero, M.; Donald, C.; Taylor, R. J. K. The Syntheses
of Rac-Inthomycin A, (+)-Inthomycin B and (+)-Inthomycin C Using
a Unified Synthetic Approach. Tetrahedron 2008, 64, 4778.
(b) Kumar, M.; Bromhead, L.; Anderson, Z.; Overy, A.; Burton, J.
W. Short, Tin-Free Synthesis of All Three Inthomycins. Chem. - Eur. J.
2018, 24, 16753. (c) Yoshino, M.; Eto, K.; Takahashi, K.; Ishihara, J.;
Hatakeyama, S. Organocatalytic Asymmetric Syntheses of Inthomy-
cins A, B and C. Org. Biomol. Chem. 2012, 10, 8164.
(4) (a) Cox, B. D.; Muccio, D. D.; Hamilton, T. P. Conformational
Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar
Conjugated Polyenes. Comput. Theor. Chem. 2013, 1011, 11. (b) He,
M.-C.; Shi, Z.; Sha, N.-N.; Chen, N.; Peng, S.-Y.; Liao, D.-F.; Wong,
M.-S.; Dong, X.-L.; Wang, Y.-J.; Yuan, T.-F.; Zhang, Y. Paricalcitol
Alleviates Lipopolysaccharide-Induced Depressive-Like Behavior by
Suppressing Hypothalamic Microglia Activation and Neuroinflamma-
tion. Biochem. Pharmacol. 2019, 163, 1.
(5) (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New
Strategies for Organic Catalysis: The First Highly Enantioselective
Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc. 2000, 122,
4243. (b) Teo, Y.-C.; Loh, T.-P. Catalytic Enantioselective Diels-
Alder Reaction via a Chiral Indium(III) Complex. Org. Lett. 2005, 7,
2539. (c) Wilson, R. M.; Danishefsky, S. J. Pattern Recognition in
Retrosynthetic Analysis: Snapshots in Total Synthesis. J. Org. Chem.
2007, 72, 4293. (d) Dai, M.; Sarlah, D.; Yu, M.; Danishefsky, S. J.;
Jones, G. O.; Houk, K. N. Highly Selective Diels-Alder Reactions of
Directly Connected Enyne Dienophiles. J. Am. Chem. Soc. 2007, 129,
645. (e) Hayashi, Y.; Samanta, S.; Gotoh, H.; Ishikawa, H.
Asymmetric Diels-Alder Reactions of α,β-Unsaturated Aldehydes
Catalyzed by a Diarylprolinol Silyl Ether Salt in the Presence of
Water. Angew. Chem., Int. Ed. 2008, 47, 6634.
(6) (a) Pragliola, S.; Cipriano, M.; Boccia, A. C.; Longo, P.
Macromol. Polymerization of Phenyl-1,3-butadienes in the Presence
of Ziegler-Natta Catalysts. Macromol. Rapid Commun. 2002, 23, 356.
(b) Ren, Y.; Miller, J. T.; Polderman, S. T.; Vo, T. D.; Wallace, A. C.
M.; Cue, J. M. O.; Tran, S. T.; Biewer, M. C.; Stefan, M. C. Halide-
free Neodymium Phosphate Based Catalyst for Highly Cis-1,4
Selective Polymerization of Dienes. RSC Adv. 2019, 9, 3345.
(c) He, J.-Y.; Cui, L.; Qi, Y.-L.; Dai, Q.-Q.; Bai, C.-X. Neodymium
Organic Sulfonate Complexes: Tunable Electronegativity/Steric
Hindrance and Application in Controlled Cis-1,4-polymerization of
Butadiene. Chin. J. Polym. Sci. 2019, 37, 208. (d) Liu, X.; Li, W.; Niu,
Q.; Wang, R.; He, A. Trans-1,4- Stereospecific Polymerization of
Isoprene With MgCl2-Supported Ziegler-Natta Catalyst I. Initial
Polymerization Kinetic and Polymerization Mechanism. Polymer
2018, 140, 255.
Scheme 6. Product Transformations
radical-mediated Heck-type alkylation. The Z- and E-alkene
mixtures, which are readily obtained from the Wittig reactions,
are employed as starting material, leading to the single
stereoisomers of polyenes. The transformation features mild
reaction conditions and broad functional group tolerance. A
vast array of valuable 1,3-E,E-dienes and 1,3,5-E,E,E-trienes are
furnished in useful yields.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, compound characterization data,
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
C.Z. is grateful for the financial support from the National
Natural Science Foundation of China (21722205), the Project
of Scientific and Technologic Infrastructure of Suzhou
(SZS201708), and the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions (PAPD).
REFERENCES
■
(1) (a) Yang, X.-H.; Dong, V. M. Rhodium-Catalyzed Hydro-
functionalization: Enantioselective Coupling of Indolines and 1,3-
Dienes. J. Am. Chem. Soc. 2017, 139, 1774. (b) Madden, K. S.; David,
S.; Knowles, J. P.; Whiting, A. Heck-Mizoroki Coupling of Vinyliodide
and Applications in the Synthesis of Dienes and Trienes. Chem.
Commun. 2015, 51, 11409. (c) Madden, K. S.; Mosa, F. A.; Whiting,
A. Non-Isoprenoid Polyene Natural Products-Structures and
Synthetic Strategies. Org. Biomol. Chem. 2014, 12, 7877. (d) Thirsk,
C.; Whiting, A. Polyene Natural Products. J. Chem. Soc., Perkin Trans.
2002, 1, 999. (e) Buschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.;
Schenthal, K. B.; Overman, L. E. Synthetic Strategies toward Natural
Products Containing Contiguous Stereogenic Quaternary Carbon
Atoms. Angew. Chem., Int. Ed. 2016, 55, 4156. (f) Zhu, Y.; Cornwall,
R. G.; Du, H.; Zhao, B.; Shi, Y. Catalytic Diamination of Olefins via
N-N Bond Activation. Acc. Chem. Res. 2014, 47, 3665. (g) Chen, J.-R.;
Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Formal [4 + 1] Annulation Reactions
in the Synthesis of Carbocyclic and Heterocyclic Systems. Chem. Rev.
2015, 115, 5301.
(7) For reviews of polyene synthesis, see: (a) Mehta, G.; Prakash, H.
S. R. Synthesis of Conjugated Dienes and Polyenes. In Patai’s
Chemistry of Functional Groups; Rappoport, Z., Ed.; John Wiley &
Sons, Ltd.: Chichester, U.K., 1997. (b) De Paolis, M.; Chataigner, I.;
Maddaluno, J. Recent Advances in Stereoselective Synthesis of 1,3-
Dienes. Top. Curr. Chem. 2012, 327, 87. For selected examples of
synthesis of conjugated dienes, see: (c) Hu, X.-H.; Zhang, J.; Yang, X.-
F.; Xu, Y. H.; Loh, T.-P. Stereo- and Chemoselective Cross-Coupling
between Two Electron-Deficient Acrylates: An Efficient Route to (Z,
E)-Muconate Derivatives. J. Am. Chem. Soc. 2015, 137, 3169.
(d) Olivares, A. M.; Weix, D. J. Multimetallic Ni- and Pd-Catalyzed
Cross-Electrophile Coupling to form Highly Substituted 1,3-Dienes. J.
Am. Chem. Soc. 2018, 140, 2446. (e) Liu, M.; Yang, P.; Karunananda,
M. K.; Wang, Y.; Liu, P.; Engle, K. M. C(alkenyl)-H Activation via
Six-Membered Palladacycles: Catalytic 1,3-Diene Synthesis. J. Am.
Chem. Soc. 2018, 140, 5805.
D
Org. Lett. XXXX, XXX, XXX−XXX