Qu et al.
JOCArticle
We also observed solvent-reversed enantioselectivity in
the Friedel-Crafts reaction of indole with arylidene malo-
nates catalyzed by trisoxazoline (TOX)-derived copper
complex5c and temperature-controlled diastereoselectivity
in the 1,3-dipolar cycloaddition of nitrones with arylidene
malonates.2k
Donor-acceptor cyclopropanes have been frequently
used in many synthetic transformations, owing to the unique
reactivity of the cyclopropane moiety.10-21 For example,
these cyclopropanes can undergo various cycloadditions,
such as the [3 þ 2] cycloadditions with aldehydes,11 aryl
isocyanides,12 cyanopyridine,13 diazene derivatives,14 imi-
nes15 and indoles,16 [3 þ 3] cycloadditions with nitrones17
and azomethine imines,18 and [4 þ 3] cycloadditions with
isobenzofurans.19 Among the cycloadditions developed, the
TABLE 1. Effects of Lewis Acidsa
entry
Lewis acid
convb (%)
3a/4ab
99/1
4/96
dr (3a)b
1
2
Yb(OTf)3 xH2O
53
>99
>99
>99
>99
91
82/18
3
Sc(OTf)3
In(OTf)3
Ga(OTf)3
Sn(OTf)2
Cu(OTf)2
Cu(SbF6)2
FeCl3
321
4
11/89
8/92
4/96
1/99
1/99
67/33
1/99
5
6
7
8
>99 (73c)
27
36
87/13
d
9
TiCl4
aReaction conditions: 1a (52.5 mg, 0.2 mmol), 2a (76.9 mg, 0.4 mmol),
Lewis acid (0.04 mmol), CH2Cl2 (1.0 mL), room temperature, 12 h.
bDetermined by 1H NMR. cIsolated yield. d-78 °C, 24 h. When the
reaction was performed at room temperature, the reaction was compli-
cated.
(8) Hydrogen-bond-directed reversal of enantioselectivity: Zeng, W.;
Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750.
(9) Selected examples of tuning the enantioselectivity with other ap-
proaches: (a) Kitagawa, O.; Matsuo, S.; Yotsumoto, K.; Taguchi, T.
J. Org. Chem. 2006, 71, 2524. (b) Lutz, F.; Igarashi, T.; Kawasaki, T.; Soai,
K. J. Am. Chem. Soc. 2005, 127, 12206. (c) Mao, J.; Wan, B.; Zhang, Z.;
Wang, R.; Wu, F.; Lu, S. J. Mol. Catal. A 2005, 225, 33. (d) Danjo, H.;
Higuchi, M.; Yada, M.; Imamoto, T. Tetrahedron Lett. 2004, 45, 603.
(e) Kuwano, R.; Sawamura, M.; Ito, Y. Bull. Chem. Soc. Jpn. 2000, 73,
2571. (f) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.;
Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121,
669. (g) Ashimori, A.; Overman, L. E. J. Org. Chem. 1992, 57, 4571.
(10) The first addition of enolates to cyclopropanes: (a) Bone, W. A.;
Perkin, W. H. J. Chem. Soc. 1895, 67, 108. For reviews, see: (b) Danishefsky,
S. Acc. Chem. Res. 1979, 12, 66. (c) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.;
Yip, Y.-C. Chem. Rev. 1989, 89, 165. (d) Reissig, H.-U.; Zimmer, R. Chem.
Rev. 2003, 103, 1151. (e) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
(f) Wenkert, E. Acc. Chem. Res. 1980, 13, 27. (g) Kulinkovich, O. G. Chem.
Rev. 2003, 103, 2597. (h) Paquette, L. A. Chem. Rev. 1986, 86, 733. (i) Reissig,
H. U. Top. Curr. Chem. 1988, 144, 73. (j) Rubin, M.; Rubina, M.; Gevorgyan,
V. Chem. Rev. 2007, 107, 3117.
reactions of cyclopropanes with enols are reported to afford
cyclopentane derivatives and/or 1,6-dicarbonyl compounds,
depending on substrates.21,22 Very recently, we found that
the product of cyclopropane-1,1-dicarboxylate with enol
silyl ether can be tuned very well by ligand providing
cyclopentanes23 and 1,6-dicarbonyl compounds respectively
with excellent selectivity. Herein, we wish to report the
results in detail.
Results and Discussion
(11) (a) Shi, M.; Yang, Y.-H.; Xu, B. Tetrahedron 2005, 61, 1893.
(b) Pohlhaus, P. D.; Johnson, J. S. J. Org. Chem. 2005, 70, 1057. (c) Gupta,
A.; Yadav, V. K. Tetrahedron Lett. 2006, 47, 8043. (d) Sliwinska, A.;
Czardybon, W.; Warkentin, J. Org. Lett. 2007, 9, 695. (e) Bowman, R. K.;
Johnson, J. S. Org. Lett. 2006, 8, 573. (f) Pohlhaus, P. D.; Johnson, J. S.
J. Am. Chem. Soc. 2005, 127, 16014. (g) Parsons, A. T.; Campbell, M. J.;
Johnson, J. S. Org. Lett. 2008, 10, 2541. (h) Pohlhaus, P. D.; Sanders, S. D.;
Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
(i) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122.
(12) Korotkov, V. S.; Larionov, O. V.; de Meijere, A. Synthesis 2006, 21,
3542.
(13) Morra, N. A.; Morales, C. L.; Bajtos, B.; Wang, X.; Jang, H.; Wang,
J.; Yu, M.; Pagenkopf, B. L. Adv. Synth. Catal. 2006, 348, 2385.
(14) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de
Meijere, A. J. Org. Chem. 2007, 72, 7504.
(15) (a) Carson, C. A.; Kerr, M. A. J. Org. Chem. 2005, 70, 8242. (b) Kang,
Y.-B.; Tang, Y.; Sun, X.-L. Org. Biomol. Chem. 2006, 299. (c) Christie, S. D. R.;
Davoile, R. J.; Jones, R. C. F. Org. Biomol. Chem. 2006, 2683.
(16) (a) Venkatesh, C.; Singh, P. P.; Ila, H.; Junjappa, H. Eur. J. Org.
Chem. 2006, 5378. (b) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf, B. L. J. Am.
Chem. Soc. 2007, 129, 9631. (c) England, D. B.; Kuss, T. D. O.; Keddy, R. G.;
Kerr, M. A. J. Org. Chem. 2001, 66, 4704.
(17) (a) Young, I. S.; Kerr, M. A. Angew. Chem., Int. Ed. 2003, 42, 3023.
(b) Young, I. S.; Kerr, M. A. Org. Lett. 2004, 6, 139. (c) Sibi, M. P.; Ma, Z.;
Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764. (d) Sapeta, K.; Kerr, M. A.
J. Org. Chem. 2007, 72, 8597. (e) Kang, Y.-B.; Sun, X.-L.; Tang, Y. Angew,
Chem. Int. Ed. 2007, 46, 3918.
Lewis Acid Effect. Using diethyl 2-phenylcyclopropane-
1,1-dicarboxylate 1a as a model substrate,21 we first evalu-
ated different Lewis acids as catalysts. The reaction of 1a
with enol silyl ether 2a was performed in methylene chloride
at room temperature under nitrogen atmosphere in the
presence of 20 mol % of Lewis acid. For a clear comparison,
reactions were all quenched after 12 h, followed by 1H NMR
analysis of the crude products. As shown in Table 1, Lewis
acids influence strongly the reaction and the product dis-
tribution. For example, although metal perchlorate hydrates
failed to promote the reaction,24 metal triflates worked well
in this reaction (entries 1-6). Yb(OTf)3 xH2O afforded
3
cycloaddition adduct 3a as the sole product in moderate
conversion with good diastereoselectivity (entry 1). The
other triflates screened gave the ring-opening adduct 4a as
the main product in excellent conversion (entries 2-6). In
particular, only product 4a was obtained when Cu(OTf)2
was used (entry 6). Cu(SbF6)2, prepared from CuCl2 and
(18) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org.
Lett. 2008, 10, 689.
(19) (a) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.;
Verteletskii, P. V. Angew. Chem., Int. Ed. 2008, 47, 1107. (b) Chagarovskiy,
A. O.; Budynina, E. M.; Ivanova, O. A.; Grishin, Y. K.; Trushkov, I. V.;
Verteletskii, P. V. Tetrahedron 2009, 65, 5385.
(20) Other reagents react with donor-acceptor cyclopropanes to give
cyclopentanes: (a) Reference 11b and references cited therein. (b) Graziano,
M. L.; Chiosi, S. J. Chem. Res., Synop. 1989, 44. (c) Yu, M.; Pagenkopf, B. L.
J. Am. Chem. Soc. 2003, 125, 8122. (d) Yu, M.; Pagenkopf, B. L. Org. Lett.
2003, 5, 5099.
(21) Wang et al. reported Sc(OTf)3-catalyzed reaction of donor-acceptor
cyclopropane-1,1-diesters with enol silyl ethers, affording1,6-dicarbonyl
compounds. See: Fang, J.; Ren, J.; Wang, Z.-W. Tetrahedron Lett. 2008,
49, 6659.
(22) (a) Miura, K.; Fugmai, K.; Oshima, K.; Utimoto, K. Tetrahedron
Lett. 1988, 29, 5135. (b) Singleton, D. A.; Church, K. M.; Lucero, M. J.
Tetrahedron Lett. 1990, 31, 5551. (c) Saigo, K.; Shimada, S.; Shibasaki, T.;
Hasegawa, M. Chem. Lett. 1990, 1093. (d) Komatsu, M.; Suehiro, I.;
Horiguchi, Y.; Kuwajima, I. Synlett 1991, 771. (e) Horiguchi, Y.; Suehiro,
I.; Sasaki, A.; Kuwajima, I. Tetrahedron Lett. 1993, 34, 6077. (f) Sugita, Y.;
Kawai, K.; Hosoya, H.; Yokoe, I. Heterocycles 1999, 51, 2029. (g) Sugita, Y.;
Kawai, K.; Yokoe, I. Heterocycles 2000, 53, 657. (h) Sugita, Y.; Kawai, K.;
Yokoe, I. Heterocycles 2001, 55, 135. (i) Takasu, K.; Nagao, S.; Ihara, M.
Adv. Synth. Catal. 2006, 348, 2376.
(23) For the synthesis applications of cyclopentanes, see: (a) Silva, L. F.
Tetrahedron 2002, 58, 9137. (b) Das, S.; Chandrasekhar, S.; Yadav, J. S.;
Gree, R. Chem. Rev. 2007, 107, 3286. (c) Hudlicky, T.; Price, J. D. Chem. Rev
1989, 89, 1467.
(24) For details, see the Supporting Information.
J. Org. Chem. Vol. 74, No. 20, 2009 7685