Synthesis of Quinoxalines
3753
synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron Lett. 2004,
45, 4873–4876; (b) Feng, J.; Yang, L.; Meng, Q.; Liu, B. The synthesis of qui-
noxalines by condensation reaction of acyloins with o-phenylenediamine
without solvent under microwave irradiation. Synth. Commun. 1998, 28,
193–196; (c) Rostamizadeh, S.; Jafari, S. Synthesis of quinoxalines under
microwave irradiation. Indian J. Heterocycl. Chem. 2001, 10, 303–304; (d)
Mohsenzadeh, F.; Aghapoor, K.; Darabi, H. R. Benign approaches for the
microwave-assisted synthesis of quinoxalines. J. Braz. Chem. Soc. 2007, 18,
297–303.
18. (a) Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S.
R.; Pawar, R. P. An efficient protocol for the synthesis of quinoxaline
derivatives at room temperature using molecular iodine as the catalyst.
Tetrahedron Lett. 2005, 46, 7183–7186; (b) Dubey, P. K.; Prasada Reddy,
P. V. V.; Srinivas, K. One-pot synthesis of 2-(1-alkyl=aralkyl-
1 h-benzimidazole-2-yl)-quinoxaline derivatives using molecular iodine.
Synth. Commun. 2008, 38, 613–618; (c) More, S. V.; Sastry, M. N. V.; Wang,
C. C.; Yao, C. F. Molecular iodine: A powerful catalyst for the easy and
efficient synthesis of quinoxalines. Tetrahedron Lett. 2005, 46, 6345–6348.
19. (a) Robinson, R. S.; Taylor, R. J. K. Quinoxaline synthesis from a-hydroxy
ketones via a tandem oxidation process using catalysed aerobic oxidation.
Synlett 2005, 1003–1005; (b) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K.
Tandem oxidation processes for the preparation of nitrogen-containing
heteroaromatic and heterocyclic compounds. Org. Biomol. Chem. 2004, 2,
788–796; (c) Venkatesh, C.; Singh, B.; Mahata, P. K.; Junjappa, H., Iia, H.
Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: A novel
highly regioselective synthesis of unsymmetrical 2,3-substituted quinoxalines.
Org. Lett. 2005, 7, 2169–2172; (d) More, S. V.; Sastry, M. N. V.; Yao, C. F.
Cerium(IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple,
proficient, and green approach for the synthesis of quinoxalines. Green Chem.
2006, 8, 91–95; (e) Darabi, H. R.; Mohandessi, S.; Aghapoor, K.;
Mohsenzadeh, F. A recyclable and highly effective sulfamic acid=MeOH
catalytic system for the synthesis of quinoxalines at room temperature. Catal.
Commun. 2007, 8, 389–392; (f) Heravi, M. M.; Taheri, S.; Bakhtiari, K.;
Oskooie, H. A. On water: A practical and efficient synthesis of quinoxaline
derivatives catalyzed by CuSO4 ꢀ 5H2O. Catal. Commun. 2007, 8, 211–214;
(g) Huang, T.; Wang, R.; Shi, L.; Lu, X. Montmorillonite K-10: An efficient
and reusable catalyst for the synthesis of quinoxaline derivatives in water.
Catal. Commun. 2008, 9, 1143–1147; (h) Das, B.; Venkateswarlu, K.; Suneel
K.; Majhi, A. An efficient and convenient protocol for the synthesis of
quinoxalines and dihydropyrazines via cyclization–oxidation processes using
HClO4 ꢀ SiO2 as a heterogeneous recyclable catalyst. Tetrahedron Lett. 2007,
48, 5371–5374; (i) Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F.;
Tehrani, M. H. Wells–Dawson type heteropolyacid catalyzed synthesis of
quinoxaline derivatives at room temperature. Monatsh Chem. 2007, 138,
465–467; (j) Hossein, A.; Oskooie, M. M.; Heravi, K. B.; Shima, T. An
efficient and facile synthesis of quinoxaline derivatives catalyzed by KHSO4