3 Selected references for [2 + 2 + 2] cycloaddition of a stoichiometric
amount of Ni(0)–aryne complex and alkynes, see: (a) M. A. Bennett
and E. Wenger, Organometallics, 1995, 14, 1267–1277;
(b) A. J. Edwards, A. C. Willis and E. Wenger, Organometallics,
2002, 21, 1654–1661; (c) K. R. Deaton and M. S. Gin, Org. Lett.,
2003, 5, 2477–2480.
4 For Pd(0)-catalyzed [2 + 2 + 2] cycloaddition of three molecules of
arynes, see: (a) D. Pena, S. Escudero, D. Pe
L. Castedo, Angew. Chem., Int. Ed., 1998, 37, 2659–2661;
(b) B. Iglesias, A. Cobas, D. Perez, E. Guitian and K. P. C.
rez, E. Guitian and
´ ´
´
´
Vollhardt, Org. Lett., 2004, 6, 3557–3560; (c) H. S. Kim,
S. Gowrisankar, E. S. Kim and J. N. Kim, Tetrahedron Lett.,
2008, 49, 6569–6572. For Pd(0)-catalyzed [2 + 2 + 2] cycloaddition
of arynes and alkynes, see: (d) D. Pena, D. Perez, E. Guitian and
´ ´
L. Castedo, J. Am. Chem. Soc., 1999, 121, 5827–5828;
(e) K. V. Radhakrishnan, E. Yoshikawa and Y. Yamamoto,
Tetrahedron Lett., 1999, 40, 7533–7535; (f) C. Romero, D. Pena,
D. Perez and E. Guitian, J. Org. Chem., 2008, 73, 7996–8000. For
´ ´
Ni(0)-catalyzed [2 + 2 + 2] cycloaddition of arynes and diynes, see:
(g) J.-C. Hsieh and C.-H. Cheng, Chem. Commun., 2005, 2459–2461.
For Pd(0)-catalyzed [2 + 2 + 2] cycloaddition of arynes and
alkenes, see: (h) E. Yoshikawa, K. V. Radhakrishnan and
Y. Yamamoto, J. Am. Chem. Soc., 2000, 122, 7280–7286;
(i) T. T. Jayanth, M. Jeganmohan and C.-H. Cheng, J. Org. Chem.,
2004, 69, 8445–8450; (j) I. Quintana, A. J. Boersma, D. Pena,
D. Perez and E. Guitian, Org. Lett., 2006, 8, 3347–3349. For
´ ´
Scheme 2 Possible mechanism for the [2 + 2 + 2] cycloaddition.
Ni(0)-catalyzed [2 + 2 + 2] cycloaddition of arynes and allenes,
see: (k) J.-C. Hsieh, D. K. Rayabarapu and C.-H. Cheng, Chem.
Commun., 2004, 532–533.
5 We have recently reported the synthesis of arylnaphthalene ligands
via Pd(0)-catalyzed [2 + 2 + 2] cycloaddition of arynes and allenes,
see: (a) Y. Sato, T. Tamura and M. Mori, Angew. Chem., Int. Ed.,
2004, 43, 2436–2440; (b) Y. Sato, T. Tamura, A. Kinbara and
M. Mori, Adv. Synth. Catal., 2007, 349, 647–661.
6 For general reviews of hetarynes, see: (a) T. Kauffmann and
R. Wirthwein, Angew. Chem., Int. Ed. Engl., 1971, 10, 20–33;
(b) M. G. Reinecke, Tetrahedron, 1982, 38, 427–498. Selected
references for generation and utilization of 2,3-pyridynes, see:
(c) G. W. Fleet and I. Fleming, J. Chem. Soc. C, 1969, 1758–1763;
(d) J. D. Cook and B. J. Wakefield, J. Chem. Soc. C, 1969, 1973–1978;
(e) C. May and C. J. Moody, J. Chem. Soc., Perkin Trans. 1, 1988,
247–250; (f) M. A. Walters and J. J. Shay, Synth. Commun., 1997, 27,
3573–3579; (g) S. J. Connon and A. F. Hegarty, Eur. J. Org. Chem.,
2004, 3477–3483. Selected references for generation and utilization of
3,4-pyridynes, see: (h) T. Kauffmann and F.-P. Boettcher, Chem.
Ber., 1962, 95, 949–955; (i) G. W. Gribble, M. G. Saulnier, M. P. Sibi
and J. A. Obaza-Nutaitis, J. Org. Chem., 1984, 49, 4518–4523;
(j) B. Jamart-Gregoire, C. Leger and P. Caubere, Tetrahedron Lett.,
1990, 31, 7599–7602; (k) G. W. Gribble and M. G. Saulnier,
Heterocycles, 1993, 35, 151–169; (l) S. J. Connon and
A. F. Hegarty, J. Chem. Soc., Perkin Trans. 1, 2000, 1245–1249;
first time and we obtained various isoquinolines, including a
polycyclic skeleton containing an isoquinoline subunit.
Although the yields are still modest in some cases, the present
results should pave the way for the development of a novel
method for the synthesis of isoquinolines, which are an
important class of compounds found in a variety of natural
products and biologically active substances. Further studies
along this line are in progress.
Part of this work was supported by Grant-in-Aid for
Scientific Research (B) (No. 19390001) from JSPS, Grant-in-
Aid for Science Research on Priority Areas (No. 19028001 and
20037002, ‘‘Chemistry of Concerto Catalysis’’) from MEXT,
Japan and by The Novartis Foundation (Japan) for the
Promotion of Science, The Uehara Memorial Foundation,
and the Akiyama Foundation, which are gratefully
acknowledged.
Notes and references
1 For recent reviews, see: (a) J. A. Varela and C. Saa
´
, Chem. Rev.,
(m) M. Dıaz, A. Cobas, E. Guitian and L. Castedo, Eur. J. Org.
´ ´
2003, 103, 3787–3801; (b) S. Kotha, E. Brahmachary and K. Lahiri,
Eur. J. Org. Chem., 2005, 4741–4767; (c) Y. Yamamoto, Curr. Org.
Chem., 2005, 9, 503–519; (d) P. R. Chopade and J. Louie, Adv.
Synth. Catal., 2006, 348, 2307–2327; (e) V. Gandon, C. Aubert and
M. Malacria, Chem. Commun., 2006, 2209–2217; (f) K. Tanaka,
Synlett, 2007, 1977–1993; (g) T. Shibata and K. Tsuchikawa, Org.
Biomol. Chem., 2008, 1317–1323; (h) R. B. Galan and T. Rovis,
Angew. Chem., Int. Ed., 2009, 48, 2830–2834.
Chem., 2001, 4543–4549; (n) N. Mariet, M. Ibrahim-Ouali and
M. Santelli, Tetrahedron Lett., 2002, 43, 5789–5791; (o) W. Lin,
L. Chen and P. Knochel, Tetrahedron, 2007, 63, 2787–2797;
(p) F. I. Carroll, T. P. Robinson, L. E. Brieaddy, R. N. Atkinson,
S. W. Mascarella, M. I. Damaj, B. R. Martin and H. A. Navarro,
J. Med. Chem., 2007, 50, 6383–6391. Also see ref. 6c and e.
7 For generation of arynes from silyl triflate precursors, see:
(a) Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett.,
1983, 1211–1214. For generation of 3,4-pyridynes from silyl triflate
precursors, see: (b) M. Tsukazaki and V. Snieckus, Heterocycles,
1992, 33, 533–536. For generation of 2,3-pyridynes from silyl triflate
precursors, see: (c) M. A. Walters and J. J. Shay, Tetrahedron Lett.,
1995, 36, 7575–7578.
2 For reviews on a transition metal-catalyzed [2 + 2 + 2] cyclo-
addition of arynes, see: (a) E. Guitia
Topics in Organometallic Chemistry, ed. J. Tsuji, Springer Verlag,
Weinheim, 2005, vol. 14, pp. 109–146; (b) D. Pena, D. Perez and
E. Guitian, Chem. Rec., 2007, 7, 326–333.
n, D. Perez and D. Pena, in
´ ´
´
´
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5245–5247 | 5247