S. Gemma et al. / Tetrahedron Letters 50 (2009) 5719–5722
5721
PPh3EtBr (for 16a)
or
was converted into the corresponding tosylate with the final aim of
hydrolyzing the ester functionality of 21 affording, under basic
conditions, epoxide 22. However, due to steric constrain, the tosy-
lation reaction occurred in low yield. Consequently, an alternative
synthetic pathway for the construction of the epoxide ring was
pursued. At this purpose, the synthesis of mesylate 6b was under-
taken, and the latter was cyclized under alkaline conditions afford-
ing epoxide 23.40 Finally, epoxide 23 was treated with an excess of
sodium azide in N,N-dimethylformamide to afford azide 24.
In conclusion, we described herein synthetic studies toward 1,2-
dioxane rings functionalized at C3, C4, and C6 positions. Control of
stereochemistry was achieved at both C3 and C4. Chemical derivati-
zation at the C3 has been performed by the synthesis of aldehydes
and epoxides. With the final aim of synthesizing potential antimala-
rials, the versatile aldehyde and epoxide functional groups can be
exploited for the decoration of the 1,2-dioxane scaffold.
R
O
PPh3nPrBr (for 16b)
OEt
OEt
Me
Me
n-BuLi, THF, 0 °C
48-52%
O
O
O
14
15a, R = Me (1:1 E/Z)
15b, R = Et (1:1 E/Z)
1. DIBAL, DCM,
-78 °C
67-61%
R
2.
CO2Et
Ph3P
Me
R
1. DIBAL, DCM
-78 °C
THF, 25 °C
2. Ti(O-i-Pr)4
MS 4A, t-BuOOH
D(-)DIPT,
Me
CO2Et
17a,b
OH
16a,b
DCM, -30 °C
78-82% (two steps)
1. Ac2O, Pyr
DMAP
2. Et3SiH, O2
Co(thd)2
1,2-DCE, 25°C
Me
Me
6
Acknowledgment
Amberlyst
R
DCM, 25 °C
R
6
O
Et3SiOO
O
OH
This investigation received financial support from the EU Com-
mission, Antimal-LSHP-CT-2005-18834.
58-65%
O
(6S,R)-6c, R = Me
(6S,R)-6d, R = Et
(6S,R)-18a,b
OAc
OAc
References and notes
Scheme 2. Synthesis of 3,6-disubstituted 1,2-dioxanes (6S,R)-6c,d.
1. Hay, S. I.; Guerra, C. A.; Tatem, A. J.; Noor, A. M.; Snow, R. W. Lancet Infect. Dis.
2004, 4, 327–336.
2. Gelb, M. H. Curr. Opin. Chem. Biol. 2007, 11, 440–445.
3. White, N. J. Science 2008, 320, 330–334.
4. Krishna, S.; Bustamante, L.; Haynes, R. K.; Staines, H. M. Trends Pharmacol. Sci.
2008, 29, 520–527.
5. Haynes, R. K.; Chan, W. C.; Lung, C. M.; Uhlemann, A. C.; Eckstein, U.; Taramelli,
D.; Parapini, S.; Monti, D.; Krishna, S. ChemMedChem 2007, 2, 1480–1497.
6. Jefford, C. W. Curr. Med. Chem. 2001, 8, 1803–1826.
7. Cumming, J. N.; Ploypradith, P.; Posner, G. H. Adv. Pharmacol. 1997, 37, 253–
297.
8. Wu, Y. Acc. Chem. Res. 2002, 35, 255–259.
9. Pagola, S.; Stephens, P. W.; Bohle, D. S.; Kosar, A. D.; Madsen, S. K. Nature 2000,
404, 307–310.
10. Robert, A.; Cazelles, J.; Meunier, B. Angew. Chem., Int. Ed. 2001, 40, 1954–1957.
11. Jefford, C. W. Drug Discovery Today 2007, 12, 487–495.
12. Tang, Y.; Dong, Y.; Vennerstrom, J. L. Med. Res. Rev. 2004, 24, 425–427.
13. Peters, W.; Robinson, B. L.; Rossier, J. C.; Misra, D.; Jefford, C. W.; Rossiter, J. C.
Ann. Trop. Med. Parasitol. 1993, 87, 9–16.
14. Dechy-Cabaret, O.; Benoit-Vical, F.; Loup, C.; Robert, A.; Gornitzka, H.;
Bonhoure, A.; Vial, H.; Magnaval, J. F.; Seguela, J. P.; Meunier, B. Chemistry
2004, 10, 1625–1636.
15. Dong, Y.; Matile, H.; Chollet, J.; Kaminsky, R.; Wood, J. K.; Vennerstrom, J. L. J.
Med. Chem. 1999, 42, 1477–1480.
16. Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A.; Stanford, D.;
Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer, K.;
Lozanom, S.; Jesus, M.; Gargallo, D.; Ward, S. A.; O’Neill, P. M. J. Med. Chem.
2008, 51, 2170–2177.
by using cobalt(II) acetylacetonate as the catalyst. However, in this
case, the trisubstituted olefin had a lower reactivity than the pre-
viously used disubstituted olefin. As reported in the literature,31
the use of cobalt(II) bis[2,2,6,6-tetramethylheptane-3,5-dienoate]
resulted in the formation of the desired intermediates. Following
our developed protocol, cyclization of (6S,R)-18a,b to afford 1,2-
dioxanes (6S,R)-6c,d was performed without preliminary isolation
of the silylated intermediates and resulted in good overall yield.
As shown in Scheme 3, intermediates 6a–d were further elabo-
rated to furnish reactive intermediates potentially useful for the
decoration of the 1,2-dioxane moiety. Intermediates 6a,c,d were
converted into the corresponding diols 19a–c38 by potassium car-
bonate-promoted hydrolysis of the ester group, performed in
methanol at 25 °C. The diol moiety was then converted into alde-
hydes 20a–c39 by treatment with sodium periodate in a 5:1 mix-
ture of acetonitrile and water.
Another versatile functional group, which could allow the
chemical derivatization of C3 position, is represented by the epox-
ide ring. In a first attempt to obtain this ring, secondary alcohol 6d
17. Ellis, G. L.; Amewu, R.; Hall, C.; Rimmer, K.; Ward, S. A.; O’Neill, P. M. Bioorg.
Med. Chem. Lett. 2008, 18, 1720–1724.
18. Kawanishi, M.; Kotoku, N.; Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med.
Chem. 2004, 12, 5297–5307.
19. Murakami, N.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi, M. Tetrahedron
Lett. 2001, 42, 7281–7285.
20. Xu, X. X.; Zhu, J.; Huang, D. Z.; Zhou, W. S. Tetrahedron Lett. 1991, 32, 5785–
5788.
21. Xu, X. X.; Dong, H. Q. J. Org. Chem. 1995, 60, 3039–3044.
22. Cafieri, F.; Fattorusso, E.; Taglialatela-Scafati, O.; Ianaro, A. Tetrahedron 1999,
55, 7045–7056.
23. McCullough, K. J.; Nojima, M. Curr. Org. Chem. 2001, 5, 601–636.
24. Wang, X.; Dong, Y.; Wittlin, S.; Creek, D.; Chollet, J.; Charman, S. A.; Tomas, J. S.;
Scheurer, C.; Snyder, C.; Vennerstrom, J. L. J. Med. Chem. 2007, 50, 5840–5847.
25. Erhardt, S.; Macgregor, S. A.; McCullough, K. J.; Savill, K.; Taylor, B. J. Org. Lett.
2007, 9, 5569–5572.
26. Olliaro, P. L.; Trigg, P. I. Bull. World Health Organ. 1995, 73, 565–571.
27. Fattorusso, C.; Campiani, G.; Catalanotti, B.; Persico, M.; Basilico, N.; Parapini,
S.; Taramelli, D.; Campagnuolo, C.; Fattorusso, E.; Romano, A.; Taglialatela-
Scafati, O. J. Med. Chem. 2006, 49, 7088–7094.
28. Fattorusso, E.; Parapini, S.; Campagnuolo, C.; Basilico, N.; Taglialatela-Scafati,
O.; Taramelli, D. J. Antimicrob. Chemother. 2002, 50, 883–888.
29. Yao, G.; Steliou, K. Org. Lett. 2002, 4, 485–488.
Me
O
Me
O
R
R1
R
R1
OH
K2CO3, MeOH
25 °C, 100%
NaIO4
6a,c,d
O
O
CHO
10:1 MeCN/H2O
70-83%
OH
19a, R = Me, R1 = Et
20a-c
(6S,R)-19b, R = Et, R1 = H
(6S,R)-19c, R = n-Pr, R1 = H
Me
Me
Me
Me
TsCl, Pyr
O
OTs
OAc
6d
6b
O
O
O
O
DCM, 25 °C
15%
(6S,R)-21
(6S,R)-22
Me
Me
Me
Me
Me
OH
Me
O
NaN3, Pyr
K2CO3
52%
O
O
O
O
DMF, 80 °C
30%
23
24
N3
30. Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 18, 1071–1074.
31. O’Neill, P. M.; Hindley, S.; Pugh, M. D.; Davies, J.; Bray, P. G.; Park, B. K.; Kapu, D.
S.; Ward, S. A.; Stocks, P. A. Tetrahedron Lett. 2003, 44, 8135–8138.
Scheme 3. Synthesis of diols 19a–c and further elaboration of the cis-diol moiety.