the one-electron oxidized TTF evolves in the 400 to
450 nm range. This spectral observation corroborates the
energetic assumption that, indeed, a C60 -exTTFꢁ+-TTF
À
ꢁ
À
+
ꢁ
to C60 -exTTF-TTFꢁ
charge shift occurs. The
C60 -exTTF-TTFꢁ+ decays monoexponentially on the lower
ms timescale to give rise to a lifetime of 5.8 ms (1.7 Â 105 sÀ1).
New donor–acceptor conjugates (1, 2) connected through a
rigid bridge formed by exTTF and p-phenyleneethynylene units
have been prepared in a multistep synthesis. Photophysical
studies reveal thatÀin 1 charge-transfer processes involve two
À
ꢁ
isoenergetic C60 -exTTFꢁ+-exTTF/C60 -exTTF-exTTFꢁ
À
ꢁ
+
ꢁ
states that are equilibrated. Consequently, two distinct charge
recombination processes evolve. In 2, on the other hand, the
situation changes due to lowering the oxidation potential of the
terminal TTF. In fact, in 2 a stepwise electron transfer
À
charge shift from C60 -exTTFꢁ+-TTF to
ꢁ
powers
À
a
+
C60 -exTTF-TTFꢁ
resulting in only a single charge
ꢁ
recombination process. Thus, exTTF acts as an efficient moiety
in electron transfer processes allowing the generation of
separated ion radical pairs with remarkable lifetimes.
Financial support from the Deutsche Forschungsge-
meinschaft (SFB 583), the Office of Basic Energy Sciences of
the US, the MICINN of Spain (projects CTQ2008-00795/
BQU and Consolider-Ingenio 2010C-07-25200, Nanociencia
Molecular), the CM (project P-PPQ-000225-0505) and the EU
(FUNMOL FP7-212942-1) is greatly appreciated.
Fig. 3 Upper part: differential absorption spectra (visible and near-
infrared region) obtained upon femtosecond flash photolysis (387 nm,
150 nJ) of C60-exTTF-TTF (2) (B10À6 M) in deoxygenated THF with
several time delays between 0 and 500 ps at room temperature. Lower
part: time–absorption profiles of the spectra shown above at 1000 nm,
monitoring the charge separation.
Notes and references
(i.e., C60-exTTF-TTF). At the conclusion of the C60 singlet
excited state stands a transient that reveals a set of two
maxima—Fig. 3. One maximum is seen at 670 nm, which agrees
well with the one-electron oxidized form of exTTF, while the
second maximum, which evolves around 1010 nm, corresponds
to the one-electron reduced form of C60. The transient is in all
cases stable on the timescale of 3.0 ns. Thus, we hypothesize
that any underlying charge shift reaction, as may happen, must
develop on a timescale outside of the 3.0 ns time window.
During the early stages of the C60-exTTF-exTTF nano-
second experiments the same spectroscopic characteristics
are discernable that were already seen at the end of the
femtosecond experiments—the radical ion pair states with
maxima at 670 and 1010 nm. Their decays differ, however,
significantly: C60-exTTF-exTTF features, for example, two
components (see Fig. S4w). For one of the two decays
a multi-wavelength analysis yields a lifetime of 485 ns
(2.1 Â 106 sÀ1). The second component, on the other hand,
is much longer lived with a lifetime of 58 ms (1.7 Â 104 sÀ1).
Since the two species are spectroscopically indistinguishable
we assign the shorter livÀed component to the adjacent radical
1 (a) Special Issue on Organic Electronics, Chem. Mater., 2004, 16,
4381; (b) J. M. Tour, Chem. Rev., 1996, 96, 537; (c) R. E. Martin
and F. Diederich, Angew. Chem., 1999, 38, 1350.
2 M. P. Eng and B. Albinsson, Angew. Chem., Int. Ed., 2006, 45,
5626.
3 (a) E. A. Weiss, M. J. Ahrens, L. W. Sinks, A. V. Gusev,
M. A. Ratner and M. R. Wasielewski, J. Am. Chem. Soc., 2004,
126, 5577; (b) R. H. Goldsmith, L. E. Sinks, R. F. Kelley,
L. J. Betzen, W. Liu, E. A. Weiss, M. A. Ratner and
M. R. Wasielewski, Proc. Natl. Acad. Sci. U. S. A., 2005, 102,
3540.
4 E. A. Weiss, M. R. Wasielewski and M. A. Ratner, Top. Curr.
Chem., 2005, 257, 103.
5 C. Atienza-Castellanos, M. Wielopolski, D. M. Guldi, C. van der
Pol, M. R. Bryce, S. Filippone and N. Martı
2007, 5164.
6 (a) C. Atienza, N. Martı
´
n, Chem. Commun.,
´
n, M. Wielopolski, N. Haworth, T. Clark
and D. M. Guldi, Chem. Commun., 2006, 3202; (b) M. Wielopolski,
C. Atienza, T. Clark, D. M. Guldi and N. Martı
2008, 14, 6379.
7 (a) F. Giacalone, J. L. Segura, N. Martı
´
n, Chem.–Eur. J.,
´
n and D. M. Guldi, J. Am.
Chem. Soc., 2004, 126, 5340; (b) F. Giacalone, J. L. Segura,
N. Martın, J. Ramey and D. M. Guldi, Chem.–Eur. J., 2005, 11,
´
4819; (c) G. de la Torre, F. Giacalone, J. L. Segura, N. Martin and
D. M. Guldi, Chem.–Eur. J., 2005, 11, 1267.
8 D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski and
N. Martı
9 B. M. Illescas, J. Santos, M. C. Dı
and D. M. Guldi, Eur. J. Org. Chem., 2007, 5027.
10 M. C. Dıaz, B. M. Illescas, C. Seoane and N. Martı
Chem., 2004, 69, 4492.
´
n, Chem. Soc. Rev., 2009, 38, 1587.
ion pair state (i.e., C60 -exTTFꢁ+-exTTF), while the longer
ꢁ
´
az, N. Martın, C. M. Atienza
´
lived component must be due to the formation of the remote
À
radical ion pair state (i.e., C60 -exTTF-exTTFꢁ+). Considering
the electrochemical identity of the two exTTF units the overall
quantum yield for forming the remote radical ion pair state
is only 25 Æ 2%. The radical ion pair state decays in
C60-exTTF-TTF in only one step (see Fig. S5w). But instead
of registering the fingerprint absorption of the one-electron
oxidized exTTF characteristics with a maximum at 670 nm,
ꢁ
´
´
n, J. Org.
11 T. Otsubo, Y. Kochi, A. Bitoh and F. Ogura, Chem. Lett., 1994,
2047.
12 (a) M. Prato and M. Maggini, Acc. Chem. Res., 1998, 31, 519;
(b) M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc.,
1993, 115, 9798.
13 L. Echegoyen and L. E. Echegoyen, Acc. Chem. Res., 1998, 31,
593.
ꢀc
This journal is The Royal Society of Chemistry 2009
5376 | Chem. Commun., 2009, 5374–5376