CHIRAL BIFUNCTIONAL PHOSPHINE ORGANOCATALYST
1553
400 MHz) δ: 8.16 (m, 1 H), 8.03 (d, J = 8.6 Hz, 1H), 7.92 (m, 2H), 7.86 (d, J = 7.8 Hz,
1H), 7.48 (m, 1H), 7.26 (m, 5H), 7.02 (d, J = 8.38 Hz, 1H), 3.46 (d, J = 10.0 Hz, 1H),
3.18 (d, J = 14.1 Hz, 1H), 2.96 (d, J = 14.1 Hz, 1H), 2.76 (d, J = 10.1 Hz, 1H), 2.59 (m,
1H), 2.43 (m, 1H), 2.28 (s, 3H), 2.20 (s, 3H); 13C NMR δ: 152.1, 137.5 (d, J = 19.2 Hz),
136.8 (d, J = 24.7 Hz), 134.7, 133.8, 133.4 (d, J = 4.7 Hz), 130.6 (d, J = 13.0 Hz), 129.2,
129.0, 128.4, 128.3, 127.0, 127.0, 126.8, 125.5, 125.2, 123.7, 118.2 (d, J = 10.0 Hz), 79.4,
51.6 (d, J = 21.3 Hz), 51.3 (d, J = 21.3 Hz), 45.2 (d, J = 4.0 Hz), 45.1 (d, J = 3.1 Hz); 31P
NMR (CDCl3, 160 MHz) δ: −47.6 ppm; HRMS(ESI): calcd for C25H25N2OPNa [M +
Na]+ 423.1602, found 423.1598; [α]20D = +68.4 (c = 0.01 g/mL, CH2Cl2).
General Procedure for Asymmetric (aza)-MBH Reactions (Table 1)
To a solution of aldehyde or imine 14 (0.5 mmol) and chiral phosphine catalyst 9
(0.05 mmol) in a specific solvent (5 mL) was added activated alkene 15 (0.5 mmol). The
resulting mixture was stirred at room temperature for a specified time listed in Table 1. After
removal of volatile components on a rotary evaporator, the crude product was subjected
to column chromatographic isolation on silica gel (eluent: petroleum ether/ethyl acetate
10:1) to give the (aza)-MBH product 16 as an enantiomeric mixture. The ee values of 16
were measured on HP 1100 HPLC instrument equipped with a Chiralpak AD-H column
(mobile phase: hexane/2-propanol 95:5–98:2; flow rate: 1.0 mL/min; wavelength: 220 nm).
Products 16 are all known compounds that were reported in our previous work.10b
Supplemental Materials: Experimental details for preparation of the intermediates
10–13; copies of NMR spectra (1H, 13C, and 31P) of 9. This material is available in the
Supplemental Materials.
REFERENCES
1. (a) Marinetti, A.; Voituriez, A. Synlett. 2010, 174-194. (b) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi,
M. Chem. Commun. 2012, 48, 1724-1732.
2. (a) Sawamura, M.; Ito, Y. Chem. Rev. 1992, 92, 857-871. (b) Steinhagen, H.; Helmchen, G. Angew.
Chem. Int. Ed. 1996, 35, 2339-2342. (c) van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998,
54, 12985-13011. (d) Rowlands, G. J. Tetrahedron. 2001, 57, 1865-1882.
3. (a) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726-3748. (b) List, B. Synlett 2001,
1675-1686. (c) List, B. Tetrahedron. 2002, 58, 5573-5590. (d) List, B. Acc. Chem. Res. 2004,
37, 548-557.
4. (a) Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049-3052. (b) Masson, G.; Housseman, C.; Zhu,
J. Angew. Chem. Int. Ed. 2007, 46, 4614-4628. (c) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43,
1005-1018. (d) Wei, Y.; Shi, M. Chin. Sci. Bull. 2010, 55, 1699-1711.
5. (a) Shi, M.; Chen, L. H. Chem. Commun. 2003, 1310-1311. (b) Shi, M.; Chen, L. H.; Li, C. Q.
J. Am. Chem. Soc. 2005, 127, 3790-3800.
6. (a) Shi, M.; Li, C. Q. Tetrahedron: Asymmetry 2005, 16, 1385-1391. (b) Liu, Y.-H.; Chen, L.-H.;
Shi, M. Adv. Synth. Catal. 2006, 348, 973-979. (c) Ito, K.; Nishida, K.; Gotanda, T. Tetrahedron
Lett. 2007, 48, 6147-6149. (d) Shi, M.; Liu, Y.-H.; Chen, L.-H. Chirality 2007, 19, 124-128.
(e) Shi, Y.-L.; Shi, M. Adv. Synth. Catal. 2007, 349, 2129-2135. (f) Qi, M.-J.; Ai, T.; Shi, M.; Li,
G. Tetrahedron 2008, 64, 1181-1186.
7. (a) Garnier, J.-M.; Liu, F. Org. Biomol. Chem. 2009, 7, 1272-1275. (b) Garnier, J.-M.; Anstiss,
C.; Liu, F. Adv. Synth. Catal. 2009, 351, 331-338.
8. For selected examples, see: (a) McDougal, N. T.; Trevellini, W. L.; Rodgen, S. A.; Kliman, L.
T.; Schaus, S. E. Adv. Synth. Catal. 2004, 346, 1231-1240. (b) Krafft, M. E.; Haxell, T. F. N. J.