C O M M U N I C A T I O N S
on the phenyl ring all afforded their corresponding 2,3-dihydro-
pyrimidinthiones 1e-i in good isolated yields (entries 5-9). It is
noteworthy that halogen tolerance was also observed, as aromatic
C-Cl bonds survived under the present conditions to selectively
yield the corresponding chloro-substituted 2,3-dihydropyrimidin-
thiones 1h and 1i (entries 8 and 9). Aromatic terminal alkynes with
ortho substituents, such as 2-methoxy- and 2-chloroethynylbenzene,
were not suitable for this reaction, probably because of their steric
hindrance. Heteroatom-containing alkynes, such as 3-ethynylth-
iophene (entry 10), were also applicable. In addition, aliphatic
alkynes could be also applied (entries 11 and 12). Furthermore the
diynes 1,4-diethynylbenzene and 1,7-octadiyne reacted with 2 equiv
of elemental sulfur and iPrNdCdNiPr to afford the corresponding
bis(2,3-dihydropyrimidinthione) compounds 1m and 1n in 71 and
73% isolated yield, respectively (entries 13 and 14).
carbodiimide.12 It is not clear yet how the final η3-S-C-N lithium
species C is formed from the four-membered-ring intermediate B
and/or B′ (see the Supporting Information for more discussion).
In summary, an organolithium-promoted MCR involving terminal
alkynes, elemental sulfur, and carbodiimides has been achieved for
the first time and offers a straightforward route to 2,3-dihydropy-
rimidinthiones that may have important biological activity. More-
over, the results observed in this work demonstrate that carbodi-
imides can undergo interesting and useful CdN double bond
cleavage and an sp3 C-H bond functionalization. Studies of
mechanistic aspects and reaction applications are in progress.
Acknowledgment. This work was supported by the Natural
Science Foundation of China and the Key Project of International
Cooperation of NSFC (20920102030).
Supporting Information Available: Experimental details, X-ray
data for 1a (CIF), and scanned NMR spectra of all new products. This
Scheme 2. Isolation and Trapping Experiments on Intermediate 2
References
(1) Reviews of MCRs: (a) Multicomponent Reactions; Zhu, J., Bienayme, H.,
Eds.; Wiley-VCH: Weinheim, Germany, 2005. (b) Zhu, J. Eur. J. Org.
Chem. 2003, 1133. (c) von Wangelin, A. J.; Neumann, H.; Go¨rdes, D.; Klaus,
S.; Stru¨bing, D.; Beller, M. Chem.sEur. J. 2003, 9, 4286.
¨
(2) CdN double bond cleavage: (a) Ocal, N.; Erden, I. Tetrahedron Lett. 2001,
42, 4765. (b) Zuckerman, R. L.; Krska, S. W.; Bergman, R. G. J. Am. Chem.
Soc. 2000, 122, 751.
(3) sp3 C-H bond activation: (a) Godula, K.; Sames, D. Science 2006, 312, 67.
(b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (c) Chen, H.;
Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995. (d) Li,
B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949.
(4) Selected reviews of amidinates and guanidinates: (a) Edelmann, F. T. AdV.
Organomet. Chem. 2008, 214, 183. (b) Coles, M. P. Dalton Trans. 2006,
985. (c) Bailey, P. J.; Pace, S. Coord. Chem. ReV. 2001, 214, 91. (d) Barker,
J.; Kilner, M. Coord. Chem. ReV. 1994, 133, 219.
Scheme 3. One-Pot 4CR for the Formation of 4 or 5
(5) Selected reviews of carbodiimide chemistry: (a) Zhang, W.-X.; Hou, Z. Org.
Biomol. Chem. 2008, 6, 1720. (b) Shen, H.; Xie, Z. J. Organomet. Chem.
2009, 694, 1652. (c) Williams, A.; Ibrahim, I. T. Chem. ReV. 1981, 81, 589.
(6) Selected examples of cycloaddition of carbodiimides: (a) Yu, R. T.; Rovis,
T. J. Am. Chem. Soc. 2008, 130, 3262. (b) Volonterio, A.; Zanda, M. Org.
Lett. 2007, 9, 841. (c) Saito, T.; Sugizaki, K.; Otani, T.; Suyama, T. Org.
Lett. 2007, 9, 1239. (d) Li, H.; Petersen, J. L.; Wang, K. K. J. Org. Chem.
2003, 68, 5512. (e) Schmittel, M.; Rodr´ıguez, D.; Steffen, J.-P. Angew. Chem.,
Int. Ed. 2000, 39, 2152.
(7) Selected examples of addition of nucleophiles to carbodiimides: (a) Zhang,
W.-X.; Li, D.; Wang, Z.; Xi, Z. Organometallics 2009, 28, 4728. (b) Zhang,
W.-X.; Nishiura, M.; Mashiko, T.; Hou, Z. Chem.sEur. J. 2008, 14, 2167.
(c) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou,
P. A. Organometallics 2008, 27, 497. (d) Du, Z.; Li, W.; Zhu, X.; Xu, F.;
Shen, Q. J. Org. Chem. 2008, 73, 8966. (e) Zhang, W.-X.; Nishiura, M.;
Hou, Z. Chem.sEur. J. 2007, 13, 4037. (f) Li, Q.; Wang, S.; Zhou, S.; Yang,
G.; Zhu, X.; Liu, Y. J. Org. Chem. 2007, 72, 6763. (g) Ong, T.-G.; O’Brien,
J. S.; Korobkov, I.; Richeson, D. S. Organometallics 2006, 25, 4728. (h)
Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2006, 25, 5515. (i) Montilla,
F.; del R´ıo, D.; Pastor, A.; Galindo, A. Organometallics 2006, 25, 4996. (j)
Zhang, W.-X.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2005, 127, 16788.
(k) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125,
8100.
Successful isolation and characterization of an η3-S-C-N
lithium species 2 from the reaction mixture of PhCtCLi, sulfur,
i
and PrNdCdNiPr before quenching were achieved, and this was
very useful for understanding the reaction mechanism (Scheme 2;
for details, see the Supporting Information). The intermediate 2
was further confirmed by trapping with various electrophiles such
as D2O, benzoyl chloride, and iodomethane (Scheme 2), yielding
2,3-dihydropyrimidinthione derivatives 3 and 4a and 1,2-dihy-
drothiopyrimidine derivative 5a, respectively. Thus, as a whole,
either 2,3-dihydropyrimidinthione 4 or 1,2-dihydrothiopyrimidine
5 could be readily obtained in a one-pot four-component reaction
(4CR) process involving terminal alkynes, elemental sulfur,
iPrNdCdNiPr, and electrophiles (Scheme 3).
(8) Examples of carbodiimide metathesis: (a) Ong, T.-G.; Yap, G. P. A.; Richeson,
D. S. Chem. Commun. 2003, 2612. (b) Zuckerman, R. L.; Bergman, R. G.
Organometallics 2000, 19, 4795. (c) Birdwhistell, K. R.; Lanza, J.; Pasos, J.
J. Organomet. Chem. 1999, 584, 200. (d) Weiss, K.; Kindl, P. Angew. Chem.,
Int. Ed. Engl. 1984, 23, 629.
(9) There is only one report on 2,3-dihydropyrimidinthiones, as the tautomeric
form of 1,2-dihydropyrimidinthiones: Barluenga, J.; Gonza´lez, F. J.; Gotor,
V.; Fustero, S. J. Chem. Soc., Perkin Trans. 1988, 1, 1739.
Scheme 4. Possible Mechanism for the Formation of 1
(10) Reported analogues such as 3,4-dihydropyrimidinthiones show good
biological activity: (a) Ashok, M.; Holla, B. S.; Kumari, N. S. Eur. J. Med.
Chem. 2007, 42, 380. (b) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
(c) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber,
S. L.; Mitchison, T. J. Science 1999, 286, 971.
(11) Selected examples of acetylides: (a) Zhang, W.-X.; Nishiura, M.; Hou, Z.
Angew. Chem., Int. Ed. 2008, 47, 9700. (b) Bae, I.; Han, H.; Chang, S. J. Am.
Chem. Soc. 2005, 127, 2038. (c) Wei, C.; Mague, J. T.; Li, C.-J. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5749. (d) Nishiura, M.; Hou, Z.; Wakatsuki,
Y.; Yamaki, T.; Miyamoto, T. J. Am. Chem. Soc. 2003, 125, 1184. (e) Frantz,
D. E.; Fa¨ssler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000,
33, 373.
(12) (a) Koketsu, M.; Mizutani, K.; Ogawa, T.; Takahashi, A.; Ishihara, H. J. Org.
Chem. 2004, 69, 8938. (b) Ishihara, H.; Yoshimi, M.; Kato, S. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 530. (c) Miyaura, N.; Yanagi, T.; Suzuki, A. Chem.
Lett. 1979, 8, 535.
Scheme 4 shows a possible route for the formation of dihydro-
pyrimidinthione derivatives 1. The reaction between a lithium
acetylide11 and sulfur should yield lithium alkynethiolate A and/or
A′. Next, a four-membered-ring intermediate B and/or B′ might
be formed via cyclization after nucleophilic attack by A′ on a
JA9069419
9
J. AM. CHEM. SOC. VOL. 131, NO. 42, 2009 15109