Studies on the H2-Mediated Coupling of Acetylene
A R T I C L E S
preformed organometallics in a range of classical CdX (X )
O, NR) addition processes, including aldol and Mannich
addition,6 carbonyl allylation,7 and carbonyl and imine viny-
lation.8 Remarkably, under transfer hydrogenation conditions,
an alcohol serves dually as hydrogen donor and precursor to
the carbonyl electrophile, enabling carbonyl addition from the
that corroborate a catalytic mechanism involving oxidative
coupling of acetylene to generate a cationic rhodacyclopenta-
diene, which engages in carbonyl or imine insertion, followed
by Brønsted acid assisted hydrogenolysis of the resulting oxa-
or aza-rhodacycloheptadienes to furnish the products of (Z)-
butadienylation. Structural assignments of ions observed in the
ESI-mass spectra are supported by multistage collisional
activated dissociation (CAD). Intervention of the purported
rhodacyclopentadiene and the purported oxa- and azarhodacy-
cloheptadiene as reactive intermediates is supported further
through the design of related processes in which these transient
species are diverted to products of [2 + 2 + 2] cycloaddition
and ꢀ-hydride elimination, respectively. The collective studies
demonstrate that cationic rhodacyclopentadienes engage in
carbonyl and imine insertion, providing a foundation for the
development of related rhodium-catalyzed C-C couplings.13
alcohol oxidation level,
a formal hydrohydroxyalkyla-
tion.7b-d,f,g,8n,9
A broad goal of these investigations resides in the develop-
ment of hydrogen-mediated couplings applicable to basic
chemical feedstocks. Accordingly, it was found that rhodium-
catalyzed hydrogenation of acetylene (2 cents/mol, annual US
production >500 metric kilotons)10 in the presence of carbonyl
compounds or imines promotes formation of (Z)-butadienyl
allylic alcohols and (Z)-butadienyl allylic amines, respectively
(eq 1).11 In these multicomponent couplings, two molecules of
acetylene combine with elemental hydrogen and a molecule of
carbonyl compound or imine.
Results and Discussion
In our initial studies on the hydrogen-mediated reductive
coupling of acetylene to carbonyl compounds,11a a catalytic
mechanism was proposed involving carbonyl insertion into a
cationic rhodacyclopentadiene obtained upon oxidative dimer-
ization of acetylene, followed by Brønsted acid assisted hydro-
genolysis of the resulting oxarhodacycloheptadiene,14 as shown
in Cycle A (Scheme 1). This interpretation of the catalytic
mechanism is consistent with the results of isotopic labeling
studies. Rhodium-catalyzed reductive coupling of R-ketoester
1a and acetylene under an atmosphere of elemental deuterium
provides deuterio-1b, which incorporates a single deuterium
atom at the diene terminus as the (Z)-stereoisomer. Rhodacy-
clopentadienes that are catalytically competent species in
acetylene cyclotrimerization to form benzene have been isolated
and characterized by single crystal X-ray diffraction analysis.15
Further, carbonyl insertion into a Rh-C bond followed by
In the present account, we disclose ESI-mass spectrometric12
and computational modeling studies of these transformations
(6) For hydrogen-mediated reductive aldol and Mannich couplings, see:
(a) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc.
2002, 124, 15156. (b) Huddleston, R. R.; Krische, M. J. Org. Lett.
2003, 5, 1143. (c) Koech, P. K.; Krische, M. J. Org. Lett. 2004, 6,
691. (d) Marriner, G. A.; Garner, S. A.; Jang, H.-Y.; Krische, M. J. J.
Org. Chem. 2004, 69, 1380. (e) Jung, C.-K.; Garner, S. A.; Krische,
M. J. Org. Lett. 2006, 8, 519. (f) Han, S. B.; Krische, M. J. Org. Lett.
2006, 8, 5657. (g) Jung, C.-K.; Krische, M. J. J. Am. Chem. Soc. 2006,
128, 17051. (h) Garner, S. A.; Krische, M. J. J. Org. Chem. 2007, 72,
5843. (i) Bee, C.; Han, S. B.; Hassan, A.; Iida, H.; Krische, M. J.
J. Am. Chem. Soc. 2008, 130, 2747.
(10) Gannon, R. E.; Manyik, R. M.; Dietz, C. M., Sargent, H. B.; Schaffer,
R. P.; Thribolet, R. O. In Kirk-Othmer’s Encyclopedia of Chemical
Technology, 5th ed.; Wiley: Hoboken, NJ, 2004; Vol. 1, p 216.
(11) For hydrogen-mediated couplings of acetylene to carbonyl compounds
and imines, see: (a) Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc.
2006, 128, 16040. (b) Skucas, E.; Kong, J.-R.; Krische, M. J. J. Am.
Chem. Soc. 2007, 129, 7242. (c) Han, S. B.; Kong, J.-R.; Krische,
M. J. Org. Lett. 2008, 10, 4133.
(12) For reviews covering use of ESI mass spectrometric analysis as applied
to the characterization of catalytic reaction mechanisms, see: (a)
Plattner, D. Int. J. Mass. Specrom. 2001, 207, 125. (b) Chen, P. Angew.
Chem., Int. Ed. 2003, 42, 2832.
(13) Following disclosure of our work (ref 11), other rhodium catalyzed
C-C bond formations believed to proceed by way of carbonyl insertion
into transient rhodacyclopentadienes were reported: (a) Tanaka, K.;
Otake, Y.; Wada, A.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9,
2203. (b) Tsuchikama, K.; Yoshinami, Y.; Shibata, T. Synlett 2007,
1395.
(7) For hydrogen-mediated carbonyl allylation, see: (a) Skucas, E.; Bower,
J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678. (b) Bower,
J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc.
2007, 129, 15134. (c) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am.
Chem. Soc. 2008, 130, 6340. (d) Shibahara, F.; Bower, J. F.; Krische,
M. J. J. Am. Chem. Soc. 2008, 130, 6338. (e) Ngai, M.-Y.; Skucas,
E.; Krische, M. J. Org. Lett. 2008, 10, 2705. (f) Kim, I. S.; Ngai,
M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891. (g) Kim,
I. S.; Han, S.-B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514.
(8) For hydrogen-mediated vinylation of carbonyl compounds and imines,
see: (a) Huddleston, R. R.; Jang, H.-Y.; Krische, M. J. J. Am. Chem.
Soc. 2003, 125, 11488. (b) Jang, H.-Y.; Huddleston, R. R.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 4664. (c) Kong, J.-R.; Cho, C.-
W.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 11269. (d) Cho,
C.-W.; Krische, M. J. Org. Lett. 2006, 8, 891. (e) Kong, J.-R.; Ngai,
M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (f) Cho,
C.-W.; Krische, M. J. Org. Lett. 2006, 8, 3873. (g) Rhee, J.-U.; Krische,
M. J. J. Am. Chem. Soc. 2006, 128, 10674. (h) Komanduri, V.; Krische,
M. J. J. Am. Chem. Soc. 2006, 128, 16448. (i) Ngai, M.-Y.; Barchuk,
A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 280. (j) Barchuk, A.;
Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 8432. (k)
Cho, C.-W.; Skucas, E.; Krische, M. J. Organometallics 2007, 26,
3860. (l) Hong, Y.-T.; Cho, C.-W.; Skucas, E.; Krische, M. J. Org.
Lett. 2007, 9, 3745. (m) Barchuk, A.; Ngai, M.-Y.; Krische, M. J.
J. Am. Chem. Soc. 2007, 129, 12644. (n) Patman, R. L.; Chaulagain,
M. R.; Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131,
2066.
(14) As previously observed (see refs 8e,g,h), carboxylic acid cocatalysts
enhance rate and conversion, presumably by circumventing highly
energetic 4-centered transition structures for σ-bond metathesis, as
required for direct hydrogenolysis of oxametallacyclic intermediates,
with 6-centered transition structures for hydrogenolysis of iridium
carboxylates derived upon protonolytic cleavage of the nitrogen-iridium
bond. This interpretation finds support in recent theoretical studies on
the hydrogenolysis of rhodium formates: Musashi, Y.; Sakaki, S. J. Am.
Chem. Soc. 2002, 124, 7588.
(15) Bianchini, C.; Caulton, K. G.; Chardon, C.; Eisenstein, O.; Folting,
K.; Johnson, T. J.; Meli, A.; Peruzzini, M.; Rauscher, D. J.; Streib,
W. E.; Vizza, F. J. Am. Chem. Soc. 1991, 113, 5127, and references
cited therein.
(9) For related hydroaminoalkylations (amine-unsaturate C-C coupling),
see: (a) Maspero, F.; Clerici, M. G. Synthesis 1980, 305. (b) Nugent,
W. A.; Ovenall, D. W.; Homes, S. J. Organometallics 1983, 2, 161.
(c) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 6690.
(d) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 14940.
(e) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed. 2009,
48, 1153. (f) Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.; Payne,
P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116.
(16) For insertion of carbonyl moieties into Rh-C bonds followed by
protonolytic cleavage or ꢀ-hydride elimination of the incipient rhodium
alkoxide, see: (a) Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2002,
124, 1674. (b) Fujii, T.; Koike, T.; Mori, A.; Osakada, K. Synlett 2002,
298.
9
J. AM. CHEM. SOC. VOL. 131, NO. 44, 2009 16055