lides.7-9 However, these two methodologies require the use
of stoichiometric amounts of organometallic reagents, which
are predominantly prepared through deprotonations with
strong bases.
employing unactivated alkyl halides.18 Given the practical
importance of efficient dirarylmethane syntheses, we con-
sequently became interested in exploring unprecedented
ruthenium-catalyzed direct benzylation reactions under nona-
cidic4 reaction conditions. Herein, we wish to report on the
development of such a protocol, as well as experimental
mechanistic studies providing evidence for a non-SEAr-type
mechanism.
During recent years, metal-catalyzed C-H bond function-
alizations have matured to being increasingly viable alterna-
tives to traditional cross-coupling reactions, which avoid the
use of organometallic reagents in stoichiometric quantities.
Thus, various protocols for efficient catalytic direct arylations
for versatile biaryl syntheses were established.10 Contrarily,
methods for intermolecular11 direct alkylations with aliphatic
halides are scarce.12 In this context, significant progress was
very recently accomplished by Hoarau13 and Fagnou,14 as
well as by Yu,15 by devising reaction conditions for
palladium-catalyzed direct alkylations of heteroarenes or
benzoic acids, respectively. We, on the contrary, developed
ruthenium catalysts for direct alkylations16,17 of arenes
At the outset, we explored various (pre)ligands and
ruthenium precursors for the direct functionalization of arene
1a with benzyl chloride 2a (Table 1). Representative
Table 1. Optimization of Direct Benzylation of Arene 1aa
(7) For select recent examples, see: (a) Bedford, R. B.; Huwe, M.;
Wilkinson, M. C. Chem. Commun. 2009, 600–602. (b) Chen, Y.-H.; Sun,
M.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 2236–2239. (c) Chupak,
L. S.; Wolkowski, J. P.; Chantigny, Y. A. J. Org. Chem. 2009, 74, 1388–
1390. (d) Burns, M. J.; Fairlamb, I. J. S.; Kapdi, A. R.; Sehnal, P.; Taylor,
R. J. K. Org. Lett. 2007, 9, 5397–5400. (e) Molander, G. A.; Elia, M. D.
J. Org. Chem. 2006, 71, 9198–9202. (f) McLaughlin, M. Org. Lett. 2005,
entry
[Ru]
L
solvent
PhMe
yield
1
2
3
4
5
6
7
8
[RuCl2(p-cymene)]2
[RuCl2(p-cymene)]2 PPh3
---
10%b
<5%b
<5%b
<5%b
<5%b
<10%b
26%b
81%
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
7, 4875–4878, and references cited therein
.
[RuCl2(p-cymene)]2 HIMesCl
[RuCl2(p-cymene)]2 HIPrCl
[RuCl2(p-cymene)]2 SHIPrCl
[RuCl2(p-cymene)]2 KOAc
[RuCl2(p-cymene)]2 PhCO2H
[RuCl2(p-cymene)]2 MesCO2H
[RuCl2(p-cymene)]2 i-PrCO2H
[RuCl2(p-cymene)]2 t-BuCO2H
[RuCl2(p-cymene)]2 (1-Ad)CO2H PhMe
[RuCl2(p-cymene)]2 (1-Ad)CO2H NMP
[RuCl2(p-cymene)]2 (1-Ad)CO2H 1,4-dioxane
[RuCl2(PPh3)3]
[RuCl2(cod)]n
(8) Liegault, B.; Renaud, J.-L.; Bruneau, C. Chem. Soc. ReV. 2008, 37,
290–299
.
(9) Kuwano, R. Synthesis 2009, 1049–1061
.
(10) Recent reviews: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu,
J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094–5115. (b) Thansandote, P.;
Lautens, M. Chem.sEur. J. 2009, 15, 5874–5883. (c) Daugulis, O.; Do,
H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074–1086. (d) Kakiuchi,
F.; Kochi, T. Synthesis 2008, 3013–3039. (e) Li, B.-J.; Yang, S.-D.; Shi,
Z.-J. Synlett 2008, 949–957. (f) Lewis, J. C.; Bergman, R. G.; Ellman, J. A.
Acc. Chem. Res. 2008, 41, 1013–1025. (g) Satoh, T.; Miura, M. Chem.
Lett. 2007, 36, 200–205. (h) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174–238. (i) Seregin, I. V.; Gevorgyan, V. Chem. Soc.
ReV. 2007, 36, 1173–1193. (j) Pascual, S.; de Mendoza, P.; Echavarren,
A. M. Org. Biomol. Chem. 2007, 5, 2727–2734. (k) Campeau, L.-C.; Stuart,
D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35–41. (l) Ackermann, L.
Synlett 2007, 507–526.
9
60%
76%
81%
10
11
12
13
14
15
<5%b
46%b
32%b
<10%b
(1-Ad)CO2H PhMe
(1-Ad)CO2H PhMe
a Reaction conditions: 1a (0.50 mmol), 2a (0.75 mmol), [Ru] (5.0 mol
%), L (30 mol %), K2CO3 (1.00 mmol), PhMe (2.0 mL), 100 °C, 20 h.
b GC-conversion; HIMes ) N,N′-bis-(2,4,6-trimethylphenyl)imidazolium,
(S)HIPr ) N,N′-bis-(2,6-di-iso-propylphenyl)imidazol(in)ium.
(11) For palladium-catalyzed intramolecular alkylations with activated
alkyl halides, see: (a) Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc.
2003, 125, 12084–12085. (b) Hwang, S. J.; Cho, S. H.; Chang, S. J. Am.
Chem. Soc. 2008, 130, 16158–16159.
(12) For reviews on palladium-catalyzed sequential reactions involving
alkylations through the use of norbornene, see: (a) Catellani, M.; Motti, E.;
Della Ca, N. Acc. Chem. Res. 2008, 41, 1512–1522. (b) Catellani, M. Synlett
2003, 298–313. (c) Refs.10b and h
phosphines or N-heterocyclic carbene precursors19 did not
enable the desired transformation (entries 1-5). However,
when employing carboxylic acids20 as additives, more
satisfactory results were obtained (entries 6-11), with
sterically demanding derivatives providing the highest yields
(entries 8 and 11).
(13) Verrier, C.; Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7,
647–650.
(14) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160–4163.
(15) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009,
48, 6097–6100.
(16) For select recent examples of ruthenium-catalyzed direct arylations,
see: (a) Kitazawa, K.; Kochi, T.; Sato, M.; Kakiuchi, F. Org. Lett. 2009,
11, 1951–1954. (b) Ackermann, L.; Born, R.; Vicente, R. ChemSusChem
2009, 2, 546–549. (c) Ackermann, L.; Mulzer, M. Org. Lett. 2008, 10, 5043–
(18) Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Angew.
Chem., Int. Ed. 2009, 48, 6045–6048.
¨
5045. (d) Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras,
F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156–1157.
(e) Ackermann, L.; Althammer, A.; Born, R. Tetrahedron 2008, 64, 6115–
6124. (f) Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y. Tetrahedron 2008,
64, 6051–6059. (g) Ackermann, L.; Althammer, A.; Born, R. Synlett 2007,
2833–2836. (h) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem.,
Int. Ed. 2006, 45, 2619–2622. (i) Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y.
J. Org. Chem. 2005, 70, 3113–3119. (j) Kakiuchi, F.; Matsuura, Y.; Kan,
S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936–5945, and references
cited therein. Reviews: (k) Ackermann, L. Modern Arylation Methods;
Wiley-VCH: Weinheim, 2009. (l) Ackermann, L.; Born, R.; Spatz, J. H.;
(19) For examples of direct arylations catalyzed by ruthenium complexes
generated from N-heterocyclic carbenes, see: (a) Ackermann, L.; Born, R.;
´
Alvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364–6367. (b)
Ackermann, L. Org. Lett. 2005, 7, 3123–3125.
(20) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10,
2299–2302.
(21) Catalytic or (over-)stoichiometric amounts of typical Lewis acids,
such as FeCl3 or AlCl3, did not provide benzylated products under otherwise
identical reaction conditions.
(22) Preliminary experiments indicated that the formation of N-benzyl
pyridinium salts was not of relevance for ruthenium-catalyzed direct
benzylations of pyridine derivatives.
(23) This product ratio could also be the result of a steric effect exerted
by the ortho-methyl substituent in substrate 4a.
Althammer, A.; Gschrei, C. J. Pure Appl. Chem. 2006, 78, 209–214
(17) Recently, ruthenium-catalyzed amino- or alkoxycarbonylations were
reported: Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi,
.
F. J. Am. Chem. Soc. 2009, 131, 2792–2793
.
Org. Lett., Vol. 11, No. 21, 2009
4967