A R T I C L E S
Gansa¨uer, et al.
catalytic conditions10 have expanded the scope of this reaction
even further and have resulted in a number of useful synthetic
applications, such as the stereoselective generation of radicals,11
unusual cyclizations,12 epoxypolyene cyclizations via radicals,13
radical tandem processes,14 and polymerization reactions.15
These C-O bond cleavages are accompanied by the formation
of the M-O bond and an increase of the oxidation state of the
metals by one and hence constitute single electron versions of
oxidative additions.16
able to realize exactly such a Cp2TiCl (1) catalyzed process,
shown in Scheme 1.4
While the reaction is potentially of high synthetic value, bi-
and tricyclic tetrahydrofurans can be prepared atom-economi-
cally18 from simple starting materials; the low 67% yield of 3
suggests that 1 is by no means the most suitable catalyst.
Here, we describe a combined experimental and theoretical
approach to the development of much more efficient conditions
for this transformation. It is based on controlling the performance
of the single electron oxidative addition to the epoxide and the
reductive elimination leading to tetrahydrofuran formation
through carefully adjusting the electronic properties of the
titanocene catalysts. This can be achieved in an experimentally
straightforward manner by the introduction of electron-donating
or -withdrawing substituents to one or both of the cyclopenta-
dienyl ligands.
Due to its easy shuttling between the oxidation states three
and four,17 the Cp2TiCl2/Cp2TiCl couple is to date unique in
being able to efficiently induce both single electron oxidative
addition and single electron reductive elimination. This particular
characteristic is highly attractive for the development of catalytic
reactions featuring both processes as key-steps. We have been
To the best of our knowledge, this concept has not been
described in the literature for single electron transfer catalysis.
Thus, our results will be of relevance for the design of other
reagents or catalysts for reactions involving single electron
transfer steps.19 Potential applications include the highly
important transformations of ketyl radicals,20 anion radical
[2 + 2] cycloadditions,21 or reactions proceeding via SOMO
catalysis.22
(8) (a) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110,
8561–8562. (b) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc.
1989, 111, 4525–4527. (c) RajanBabu, T. V.; Nugent, W. A.; Beattie,
M. S. J. Am. Chem. Soc. 1990, 112, 6408–6409. (d) RajanBabu, T. V.;
Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986–997.
(9) (a) Ferna´ndez-Mateos, A.; Martin de la Nava, E.; Pascual Coca, G.;
Ramos Silva, A.; Rubio Gonza´lez, R. Org. Lett. 1999, 1, 607–609.
(b) Ferna´ndez-Mateos, A.; Mateos Buro´n, L.; Rabanedo Clemente,
R.; Ramos Silva, A. I.; Rubio Gonza´lez, R. Synlett 2004, 1011–1014.
(c) Ferna´ndez-Mateos, A.; Herrero Teijo´n, P.; Rabanedo Clemente,
R.; Rubio Gonza´lez, R.; Sanz Gonza´lez, F. Synlett 2007, 2718–2722.
(d) Ferna´ndez-Mateos, A.; Herrero Teijo´n, P.; Mateo´s Buron, L.;
Rabanedo Clemente, R.; Rubio Gonza´lez, R. J. Org. Chem. 2007, 72,
9973–9982.
Results and Discussion
This investigation is firmly based on a close interaction
between theoretical and experimental studies for the identifica-
tion of an efficient catalyst for our reaction. The prime virtue
of this combined study is that theory provides the knowledge
of reaction and activation energies as well as the determina-
tion of the structures of pertinent intermediates of the oxidative
addition and reductive elimination. In this manner, the crucial
data for the evaluation of our concept will be provided. The
synthetic study will establish which of the complexes are stable
under the reaction conditions and which of these two elementary
reactions is more critical for an efficient catalytic reaction.
Moreover, only an experimental study can establish which
titanocene(III) complexes can effectively suppress undesired
intermolecular side-reactions, e.g., interception of the pivotal
radical intermediates by a second equivalent of the titanoce-
(10) (a) Gansa¨uer, A.; Pierobon, M.; Bluhm, H. Angew. Chem., Int. Ed.
1998, 37, 101–103. (b) Gansa¨uer, A.; Bluhm, H.; Pierobon, M. J. Am.
Chem. Soc. 1998, 120, 12849–12859. (c) Gansa¨uer, A.; Bluhm, H.
Chem. Commun. 1998, 2143–2144. (d) Barrero, A. F.; Rosales, A.;
Cuerva, J. M.; Oltra, J. E. Org. Lett. 2003, 5, 1935–1938.
(11) (a) Gansa¨uer, A.; Lauterbach, T.; Bluhm, H.; Noltemeyer, M. Angew.
Chem., Int. Ed. 1999, 38, 2909–2910. (b) Gansa¨uer, A.; Bluhm, H.;
Pierobon, M.; Keller, M. Organometallics 2001, 20, 914–919. (c)
Gansa¨uer, A.; Bluhm, H.; Lauterbach, T. AdV. Synth. Catal. 2001,
343, 785–787. (d) Gansa¨uer, A.; Bluhm, H.; Rinker, B.; Narayan, S.;
Schick, M.; Lauterbach, T.; Pierobon, M. Chem.sEur. J. 2003, 9,
531–542. (e) Gansa¨uer, A.; Fan, C.-A.; Keller, F.; Keil, J. J. Am. Chem.
Soc. 2007, 129, 3484–3485. (f) Gansa¨uer, A.; Fan, C.-A.; Keller, F.;
Karbaum, P. Chem.sEur. J. 2007, 13, 8084–8090.
(12) (a) Gansa¨uer, A.; Lauterbach, T.; Geich-Gimbel, D. Chem.sEur. J.
2004, 10, 4983–4990. (b) Friedrich, J.; Dolg, M.; Gansa¨uer, A.; Geich-
Gimbel, D.; Lauterbach, T. J. Am. Chem. Soc. 2005, 127, 7071–7077.
(c) Friedrich, J.; Walczak, K.; Dolg, M.; Piestert, F.; Lauterbach, T.;
Worgull, D.; Gansa¨uer, A. J. Am. Chem. Soc. 2008, 130, 1788–1796.
(13) (a) Justicia, J.; Rosales, A.; Bun˜uel, E.; Oller-Lo´pez, J. L.; Valdivia,
M.; Ha¨ıdour, A.; Oltra, J. E.; Barrero, A. F.; Ca´rdenas, D. J.; Cuerva,
J. M. Chem.sEur. J. 2004, 10, 1778–1788. (b) Justicia, J.; Oller-
Lopez, J. L.; Campan˜a, A. G.; Oltra, J. E.; Cuerva, J. M.; Bun˜uel, E.;
Ca´rdenas, D. J. J. Am. Chem. Soc. 2005, 127, 14911–14921. (c)
Cuerva, J. M.; Justicia, J.; Oller-Lo´pez, J. L.; Bazdi, B.; Oltra, J. E.
Mini-ReV. Org. Chem. 2006, 3, 2335, 89. (d) Gansa¨uer, A.; Rosales,
A.; Justicia, J. Synlett 2006, 927–929. (e) Gans¨; auer, A.; Justicia, J.;
Rosales, A.; Worgull, D.; Rinker, B.; Cuerva, J. M.; Oltra, J. E. Eur.
J. Org. Chem. 2006, 4115–4127.
(17) (a) Enemærke, R. J.; Hjøllund, G. H.; Daasbjerg, K.; Skrydstrup,
T. C. R. Acad. Sci. 2001, 4, 435–438. (b) Enemærke, R. J.; Larsen,
J.; Skrydstrup, T.; Daasbjerg, K. Organometallics 2004, 23, 1866–
1874. (c) Enemærke, R. J.; Larsen, J.; Skrydstrup, T.; Daasbjerg, K.
J. Am. Chem. Soc. 2004, 126, 7853–7864. (d) Enemærke, R. J.; Larsen,
J.; Hjøllund, G. H.; Skrydstrup, T.; Daasbjerg, K. Organometallics
2005, 24, 1252–1262. (e) Larsen, J.; Enemærke, R. J.; Skrydstrup,
T.; Daasbjerg, K. Organometallics 2006, 25, 2031–2036.
(18) (a) Trost, B. M. Science 1991, 254, 1471–1477. (b) Trost, B. M.
Angew. Chem., Int. Ed. 1995, 34, 259–281.
(19) For a review on catalytic radical reactions, see: Ford, L.; Jahn, U.
Angew. Chem., Int. Ed. 2009, 48, 6386–6389.
(14) (a) Gansa¨uer, A.; Pierobon, M.; Bluhm, H. Angew. Chem., Int. Ed.
2002, 41, 3206–3208. (b) Cuerva, J. M.; Campan˜a, A. G.; Justicia, J.;
Rosales, A.; Oller-Lo´pez, J. L.; Robles, R.; Ca´rdenas, D.; Bun˜uel, E.;
Oltra, J. E. Angew. Chem., Int. Ed. 2006, 45, 5522–5526. (c) Gansa¨uer,
A.; Fan, C.-A.; Piestert, F. J. Am. Chem. Soc. 2008, 130, 6916–6917.
(d) Campan˜a, A. G.; Bazdi, B.; Fuentes, N.; Robles, R.; Cuerva, J. M.;
Oltra, J. E.; Porcel, S.; Echavarren, A. Angew. Chem., Int. Ed. 2008,
47, 7515–7519.
(20) (a) Emonds, D. J.; Johnston, D.; Procter, D. J. Chem. ReV. 2004, 104,
3371–3403. (b) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew.
Chem., Int. Ed. 2009, 48, 7140–7165.
(21) (a) Baik, T.-G.; Luiz, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem.
Soc. 2001, 123, 6716–6717. (b) Wang, L.-C.; Jang, H.-Y.; Roh, Y.;
Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 9448–9453. (c) Yang, J.; Felton, G. A. N.; Bauld,
N. L.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 1634–1635. (d)
Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem.
Soc. 2008, 130, 12886–12887.
(15) (a) Asandei, A. D.; Moran, I. W. J. Am. Chem. Soc. 2004, 126, 15932–
15933. (b) Asandei, A. D.; Moran, I. W. J. Polym. Sci., Part A: Polym.
Chem. 2006, 44, 6028–6038. (c) Asandei, A. D.; Moran, I. W. J.
Polym. Sci., Part A: Polym. Chem. 2005, 43, 6039–6047. (d) Asandei,
A. D.; Moran, I. W. J. Polym. Sci., Part A: Polym. Chem. 2006, 44,
1060–1070. (e) Asandei, A. D.; Chen, Y.; Saha, G.; Moran, I. W.
Tetrahedron 2008, 64, 11831–11838.
(22) (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Aston, K.; MacMillan,
D. C. W. Science 2007, 316, 582–585. (b) Conrad, J. C.; Kong, J.;
MacMillan, D. C. W. J. Am. Chem. Soc. 2009, 131, 11640–11641.
(c) Nagib, D. A.; Scott, M. E.; MacMillan, D. C. W. J. Am. Chem.
Soc. 2009, 131, 10875–10877.
(16) Halpern, J. Acc. Chem. Res. 1970, 3, 386–392.
9
16990 J. AM. CHEM. SOC. VOL. 131, NO. 46, 2009