Article
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 21 6605
azeotroped with toluene, suspended in acetonitrile, and then
treated with 1 N HCl (in ethyl ether) (2.71 mL, 2.71 mmol). The
solid product was filtered and washed with a small amount of
development of calindol as a new calcimimetic acting at the calcium-
sensing receptor. Bioorg. Med. Chem. Lett. 2004, 14, 3345–3349.
Kessler, A.; Faure, H.; Roussanne, M. C.; Ferry, S.; Ruat, M.; Dauben,
P.; Dodd, R. H. N1-Arylsulfonyl-N2-(1-(1-naphthyl)ethyl)-1,2-diamino-
cyclohexanes: a new class of calcilytic agents acting at the calcium-
sensing receptor. ChemBioChem 2004, 5, 1131–1136. Arey, B. J.;
Seethala, R.; Ma, Z.; Fura, A.; Morin, J.; Swartz, J.; Vyas, V.; Yang,
W.; Dickson, J. K., Jr.; Feyen, J. H. M. A novel calcium-sensing receptor
antagonist transiently stimulates parathyroid hormone secretion in vivo.
Endocrinology 2005, 5, 1131–1136. Yang, W.; Wang, Y.; Roberge, J. Y.;
Ma, Z.; Liu, Y.; Lawerence, R. M.; Rotella, D. P.; Seethala, R.; Feyen,
J. H. M.; Dickson, J. K., Jr. Discovery and structure activity relationships
of benzylpyrrolidine substituted aryloxypropanols as calcium-sensing
receptor antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 1225–1228.
Gavai, A. V.; Vaz, R. J.; Mikkilineni, A. B.; Roberge, J. Y.; Liu, Y.;
Lawrence, R. M.; Corte, J. R.; Yang, W.; Bednarz, M.; Dickson, J. K., Jr.;
Ma, Z.; Seethala, R.; Feyen, J. H. M. Discovery of novel 1-arylmethyl
pyrrolidin-2-yl ethanol amines as calcium-sensing receptor antagonists.
Bioorg. Med. Chem. Lett. 2005, 15, 5478–5482. Shcherbakova, I.;
Balandrin, M. F.; Fox, J.; Ghatak, A.; Heaton, W.; Conklin, R. L. 3H-
Quinazolin-4-ones as a new calcilytic template for the potential treatment
of osteoporosis. Bioorg. Med. Chem. Lett. 2005, 15, 1557–1560.
Shcherbakova, I.; Huang, G.; Geoffroy, O. J.; Nair, S. K.; Swierczek,
K.; Balandrin, M. F.; Fox, J.; Heaton, W. L.; Conklin, R. L. Bioorg. Med.
Chem. Lett. 2005, 15, 2537–2540.
1
acetonitrile to yield the title compound (245 mg, 38.4%). H
NMR (400 MHz, DMSO-d6): δ 1.29 (s, 6 H), 2.54-2.59 (m, 2 H),
2.77-2.84 (m, 2 H), 3.18 (s, 3 H), 3.36-3.43 (m, 1 H), 4.15-4.30
(m, 3 H), 5.97-6.04 (m, 1 H), 7.24 (d, J=8.59 Hz, 1 H), 7.39-
7.43 (m, 1 H), 7.48-7.59 (m, 3 H), 7.63 (s, 1 H), 7.78 (s, 1 H),
7.87-7.94 (m, 3 H), 8.65-8.72 (m, 1 H), 8.76-8.85 (m, 1 H),
12.15 (s, 1 H). 13C NMR: δ 22.42, 28.86, 34.94, 42.75, 43.89,
54.89, 65.38, 70.64, 100.54, 113.30, 116.46, 125.85, 126.16,
127.44, 127.57, 129.01, 129.21, 131.93, 132.82, 133.01, 134.19,
135.08, 158.35, 173.52. HRMS: 447.2282 (calcd 447.2284).
[R]2D3.6 þ11.75 (c 0.74, DMSO). HPLC purities: method A,
98.5%, tR=6.95 min; method C, 100%, tR=2.76 min.
Acknowledgment. The authors thank Drs. John Gleason
and Brian Metcalf for their support of this work.
References
(1) Bonnick, S. L. Osteoporosis in men and women. Clin. Cornerstone
2006, 8, 28–39.
(6) Dobnig, H.; Turner, R. T. Evidence that intermittent treatment with
parathyroid hormone increases bone formation in adult rats by
activation of bone lining cells. Endocrinology 1995, 136, 3632–3638.
Ishizuya, T.; Yokose, S.; Hori, M.; Noda, T.; Suda, T.; Yoshiki, S.;
Yamaguchi, A. Parathyroid hormone exerts disparate effects on osteo-
clast differentiation depending on exposure time in rat osteoblastic cells.
J. Clin. Invest. 1997, 99, 2961–2970. Frolik, C. A.; Black, E. C.; Cain,
R. L.; Satterwhite, J. H.; Brown-Augsburger, P. L.; Sato, M.; Hock, J. M.
Anabolic and catabolic bone effects of human parathyroid hormone (1-
34) are predicted by duration of hormone exposure. Bone 2003, 33, 372–
379. Onyia, J. E.; Helvering, L. M.; Gelbert, L.; Wei, T.; Huang, S.; Chen,
P.; Dow, E. R.; Maran, A.; Zhang, M.; Lotinun, S.; Halladay, D. L.; Miles,
R. R.; Kulkarni, N. H.; Ambrose, E. M.; Ma, Y. L.; Frolik, C. A.; Sato, M.;
Bryant, H. U.; Turner, R. T. Molecular profile of catabolic versus
anabolic treatment regimens of parathyroid hormone (PTH) in rat bone:
an analysis of DNA microarray. J. Cell. Biochem. 2005, 95, 403–418.
(7) Marquis, R. W.; Lago, A. M.; Callahan, J. F.; Trout, R. E. L.;
Gowen, M.; DelMar, R. G.; Van Vegnan, B. C.; Logan, S.; Shimizu,
S.; Fox, J.; Nemeth, E. F.; Yang, Z.; Roethke, T.; Smith, B. R.;
Ward, K. W.; Lee, J.; Keenan, R. M.; Bhatnagar, P. Antagonists of
the calcium receptor I. Amino alcohol-based parathyroid hormone
secretagogues. J. Med. Chem. 2009, 52, 3982–3993.
(8) Crivori, P.; Poggesi, I. Predictive model for identifying potential
CYP2D6 Inhibitors. Basic Clin. Pharm. Toxicol. 2005, 96, 251–253.
Ekins, S.; Gianpaolo, B.; Binkley, S.; Gillespie, J. S.; Ring, B. J.; Winkel,
J. H.; Wrighton, S. A. Three and four dimensional-quantitative structure
activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors.
Pharmacogenetics 1999, 9, 477–489. De Groot, M. J.; Ackland, M. J.;
Horne, V. A.; Alex, A. A.; Jones, B. C. Novel approach to predicting
P450-mediated drug metabolism: development of a combined protein
and pharmacophore model for CYP2D6. J. Med. Chem. 1999, 42, 1515–
1524. Rowland, P.; Blaney, F. E.; Smyth, M. G.; Jones, J. J.; Leydon,
V. R.; Oxbrow, A. K.; Lewis, C. J.; Tennant, M. G.; Modi, S.; Eggleston,
D. S.; Chenery, R. J.; Bridges, A. M. Crystal structure of the human
cytochrome P450 2D6. J. Biol. Chem. 2006, 281, 7614–7622. Mitcheson,
J. S. hERG potassium channels and the structural basis of drug-induced
arrhythmias. Chem. Res. Toxicol. 2008, 21, 1005–1010. Kramer, C.;
Beck, B.; Kriegel, J. M.; Clark, T. A composite model for hERG
blockade. ChemMedChem 2008, 3, 254–265. Stansfeld, P. J.; Gedeck,
P.; Gosling, M.; Cox, B.; Mitcheson, J. S.; Sutcliffe, M. J. Drug block of
the hERG potassium channel: insights from modeling. Proteins: Struct.,
Funct., Bioinf. 2007, 68, 568–580. Sanguinetti, M. C.; Tristani-Firouzi,
M. hERG potassium channels and cardiac arrhythmia. Nature 2006, 440,
463–469. Sanguinetti, M. C.; Mitcheson, J. S. Predicting drug-hERG
channel interactions that cause acquired long QT syndrome. Trends
Pharmacol. Sci. 2005, 26, 119–124. Fernandez, D.; Ghanta, A.; Kauffman,
G. W.; Sanguinetti, M. C. Physiochemical features of the hERG channel
binding site. J. Biol. Chem. 2004, 279, 10120–10127. Tonioli, C.;
Crisma, M.; Formaggio, F.; Peggion, C. Control of peptide conformation
by the Thorpe-Ingold effect (C-r tetrasubstitution). Biopolymers 2001,
60, 396–419.
(2) Bodenner, D.; Redman, C.; Riggs, A. Teriparatide in the manage-
ment of osteoporosis. Clin. Interventions Aging 2007, 2, 499–507.
Bilezikian, J. P. Anabolic therepy for osteoporosis. Women’s Health
2007, 3, 243–253. Girotra, M.; Rubin, M. R.; Bilezikian, J. P. The use of
parathyroid hormone in the treatment of osteoporosis. Rev. Endocr.
Metab. Disord. 2006, 7, 113–121. Eriksen, E. F.; Robins, D. A.
Teriparatide: a bone formation treatment for osteoporosis. Drugs Today
2004, 40, 935–948. Quattrocchi, E.; Kourlas, H. Teriparaitide: a review.
Clin. Ther. 2004, 26, 841–854. Dobnig, H. A review of teriparatide and
its clinical efficacy in the treatment of osteoporosis. Expert Opin.
Pharmacother. 2003, 57, 710–718. Ebling, P. R.; Russell, R. G. G.
Teriparaitide (rhPTH1-34) for the treatment of osteoporosis. Int. J. Clin.
Pract. 2003, 57, 710–718. Berg, C.; Neumeyer, K.; Kirkpatrick, P. Fresh
from the pipline: teriparatide. Nat. Rev. Drug Discovery 2003, 2, 257–
258.
(3) Brown, E. M.; MacLeod, R. J. Extracellular calcium sensing and
extracellular calcium signaling. Physiol. Rev. 2001, 81, 239–297.
Nemeth, E. F. Calcium receptor-dependent regulation of cellular func-
tions. News Physiol. Sci. 1995, 10, 1–5. Brown, E. M.; MacLeod, R. J.
Extracellular calcium sensing and extracellular calcium signaling. Phy-
siol. Rev. 2001, 81, 239–297. Chen, R. A.; Goodman, W. G. Role of the
calcium-sensing receptor in parathyroid gland physiology. Am. J.
Physiol.: Renal Physiol. 2004, 286, F1005–F1011. Tfelt-Hansen, J.;
Brown, E. M. The calcium-sensing receptor in normal physiology and
pathophysiology: a review. Crit. Rev. Clin. Lab. Sci. 2005, 42, 35–70.
(4) Locatelli, F.; Pontoriero, G.; Limbardo, M.; Tentori, F. Cinacalcet
hydrochloride: calcimimnetic for the treatment of hyperparathyr-
oidism. Expert Opin. Endocr. Metabol. 2006, 1, 167–179. Dong, B. J.
Cinacalcet: an oral calcimimetic agent for the management of hyperpar-
athyroidism. Clin. Ther. 2005, 27, 1725–1751. de Francisco, A. L. M.;
Cinacalcet, H. C. L. A novel therapeutic for the treatment of hyperpar-
athyroidism. Expert Opin. Pharmacother. 2005, 6, 441–452.
(5) Nemeth, E. F.; Delmar, E. C.; Heaton, W. L.; Miller, M. A.;
Lambert, L. D.; Conklin, R. L.; Gowen, M.; Gleason, J. G.;
Bhþat2nagar, P. K.; Fox, J. Calcilytic compounds: potent and selective
Ca receptor antagonists that stimulate secretion of parathyroid
hormone. J. Pharmacol. Exp. Ther. 2001, 299, 323–331. Gowen, M.;
Stroup, G. B.; Dodds, R. A.; James, I. E.; Votta, B. J.; Smith, B. R.;
Bhatnagar, P. K.; Lago, A. M.; Callahan, J. F.; Del Mar, E. G.; Miller, M.
A.; Nemeth, E. F.; Fox, J. Antagonizing the parathyroid calcium receptor
stimulates parathyroid secretion and bone formation in osteopenic rats.
J. Clin. Invest. 2000, 105, 1595–1604. Arey, B. J.; Seethala, R.; Ma, Z.;
Fura, A.; Morin, J.; Swartz, J.; Vyas, V.; Yang, W.; Dickson, J. K., Jr.;
Feyen, J. H. M. A novel calcium-sensing receptor antagonist transiently
stimulates parathyroid hormone secretion in vivo. Endocrinology 2005,
5, 1131–1136. Dauban, P.; Ferry, S.; Faure, H.; Ruat, M.; Dodd, R. H. N1-
Arylsulfonyl-N2-(1-aryl)ethyl-3-phenylpropane-1,2-diamines as novel
calcimimetics acting on the calcium sensing receptor. Bioorg. Med.
Chem. Lett. 2000, 10, 2001–2004. Kessler, A.; Faure, H.; Ruat, M.;
Dauban, P.; Dodd, R. H. N2-Benzyl-N1-(1-(1-naphthyl)ethyl)-3-phenyl-
propane-1,2-diamines and conformationally constrained indole analogues:
(9) See first two references of ref 6.