ORGANIC
LETTERS
2009
Vol. 11, No. 22
5322-5325
meso,meso′-Bis(5-azaindol-2-yl)-Appended
meso-meso-Linked Zn(II) Diporphyrin:
A Discrete Fluorescent Assembly
Chihiro Maeda,† Hiroshi Shinokubo,*,‡ and Atsuhiro Osuka*,†
Department of Chemistry, Graduate School of Science, Kyoto UniVersity, Sakyo-ku,
Kyoto 606-8502, Japan, and Department of Applied Chemistry, Graduate School of
Engineering, Nagoya UniVersity, Chikusa-ku, Nagoya 464-8603, Japan
osuka@kuchem.kyoto-u.ac.jp; hshino@apchem.nagoya-u.ac.jp
Received October 4, 2009
ABSTRACT
Cu(II)-catalyzed intramolecular cyclization of meso-(4-aminopyrid-3-yl)ethynyl Zn(II) porphyrin provided meso-(5-azaindol-2-yl)-substituted Zn(II)
porphyrin. meso,meso′-Bis(5-azaindol-2-yl)-substituted diporphyrin 7 was similarly prepared and was found to form a fluorescent trimeric
prismatic assembly consisting of single atropisomer 7in-in
.
Since the structure of the light-harvesting complex LH2 of
the purple bacterium was determined to be a circular
chromophoric architecture, cyclic porphyrin arrays have
attracted considerable interest in view of photosynthetic
antenna models.1,2 Toward the construction of such arrays,
both covalent3 and noncovalent approaches4 have been
attempted. Most of covalent approaches need time-consuming
and many tedious synthetic steps,5,6 while in some cases
template synthesis facilitates the formation of cyclic arrays.7
As a promising noncovalent method, metalloporphyrins
having coordinating substituents have been often used for
the construction of cyclic porphyrin arrays via metal-ligand
coordination interactions. Among these, we have explored
† Kyoto University.
‡ Nagoya University.
(1) (a) McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-
Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995,
374, 517–521. (b) Roszak, A. M.; Howard, T. D.; Southall, J.; Gardiner,
A. T.; Law, C. J.; Isaacs, N. W.; Cogdell, T. J. Science 2003, 302, 1969–
(5) (a) Sugiura, K.; Tanaka, H.; Matsumoto, T.; Kawai, T.; Sakata, Y.
Chem. Lett. 1999, 1193–1194. (b) Sugiura, K.; Fujimoto, Y.; Sakata, Y.
Chem. Commun. 2000, 1105–1106. (c) Rucareanu, S.; Mongin, O.; Schuwey,
A.; Hoyler, N; Gossauer, A. J. Org. Chem. 2001, 66, 4973–4988. (d)
Hoffmann, M.; Wilson, C. J.; Odell, B.; Anderson, H. L. Angew. Chem.,
Int. Ed. 2007, 46, 3122–3125. (e) Song, J. X.; Jang, S. Y.; Yamaguchi, S;
Sankar, J.; Hiroto, S.; Aratani, N; Shin, J.-Y.; Easwaramoorthi, S.; Kim,
K. S.; Kim, D.; Shinokubo, H.; Osuka, A. Angew. Chem., Int. Ed. 2008,
1972
.
(2) (a) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34,
40–48. (b) Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res. 2002,
35, 57–69. (c) Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew.
Chem., Int. Ed. 2004, 43, 150–158. (d) Kim, D.; Osuka, A. Acc. Chem.
47, 6004–6007
.
Res. 2004, 37, 735–745
(3) Nakamura, Y.; Aratani, N.; Osuka, A. Chem. Soc. ReV. 2007, 36,
831–845.
.
(6) (a) Peng, X.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.;
Hwang, I.-W.; Ahn, T. K.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2004,
126, 4468–4469. (b) Nakamura, Y.; Hwang, I.-W.; Aratani, N.; Ahn, T. K.;
Ko, D. M.; Takagi, A.; Kawai, T.; Matsumoto, T.; Kim, D.; Osuka, A.
J. Am. Chem. Soc. 2005, 127, 236–246. (c) Hori, T.; Aratani, N.; Takagi,
A.; Matsumoto, T.; Kawai, T.; Yoon, M.-C.; Yoon, Z. S.; Cho, S.; Kim,
D.; Osuka, A. Chem.sEur. J. 2006, 12, 1319–1327. (d) Hori, T.; Peng, X.;
Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Yoon, Z. S.; Yoon,
(4) (a) Imamura, T.; Fukushima, K. Coord. Chem. ReV. 2000, 198, 133–
156. (b) Wojaczyn´ski, J.; Latos-Graz˙yn´ski, L. Coord. Chem. ReV. 2000,
204, 113–171. (c) Iengo, E.; Zangrando, E.; Alessio, E. Eur. J. Inorg. Chem.
2003, 2371–2384. (d) Satake, A.; Kobuke, Y. Tetrahedron 2005, 61, 13–
41. (e) Maeda, C.; Kamada, T.; Aratani, N.; Osuka, A. Coord. Chem. ReV.
2008, 251, 2743–2752.
M.-C.; Yang, J.; Kim, D.; Osuka, A. Chem.sEur. J. 2008, 14, 582–595
.
10.1021/ol902294r CCC: $40.75
Published on Web 10/16/2009
2009 American Chemical Society