10.1002/adsc.201900881
Advanced Synthesis & Catalysis
ketones with high geometrical selectivity. After removing
the Boc group, the 6-endo-trig cyclization occurred
smoothly upon treatment with mild base to deliver tri-
substituted-4-piperidones in excellent yields. To the best of
our knowledge, a catalytic synthesis of carbon tri-
substituted piperidones from an acyclic enone is very
rare.[18]
D. Bailey, P. A. Millwood, P. D. Smith, Chem.
Commun. 1998, 633.
[3] a) W. Chen, X. Zheng, Y. P. Ruan, P. Q. Huang,
Heterocycles 2009, 79, 681-693. b) E. Addala, H.
Rafiei, S. Das, B. Bandy, U. Das, S. S. Karki, J. R.
Dimmock, Bioorganic & Medicinal Chemistry Letters
2017, 27, 3669-3673.
[4] J. Dimmock, A. Jha, G. A. Zello, J. W. Quail, E. O.
Oloo, K. H. Nienaber, E. S. Kowalczyk, T. M. Allen, C.
L. Santos, E. D. Clercq, J. Balzarini, E. K. Manavathu,
J. P. Stables, European Journal of Medicinal Chemistry
2002, 37, 961-972.
Experimental Section
General procedure for synthesis of coupling product (4)
from propargyl alcohol (1) and Michael acceptor (2)
[5] J. R. Dimmock, M. P. Padmanilayam, R. N. Puthucode,
A. J. Nazarali, N. L. Motaganahalli, G. A. Zello, J. W.
Quail, E. O. Oloo, H. B. Kraatz, J. S. Prisciak, T. M.
Allen, C. L. Santos, J. Balzarini, E. D. Clercq, E. K.
Manavath, J. Med. Chem. 2001, 44 (4), 586-593.
To a well-stirred solution of the propargyl alcohol (1) [1
eq] in a (10:1) mixture of acetone and water was added the
catalyst CpRu(CH3CN)3PF6 (3) [10 mol%] and Michael
acceptor (2) [1 eq] sequentially and stirred at room
temperature for 2-4 hrs. Then acetone was evaporated out
under vacuum. The reaction mixture was extracted with
ether (3 X 5ml) and the organic extract was separated and
concentrated under vacuum to give a yellow liquid. The
crude yellow liquid was chromatographed with silica gel
and eluted with 9:1 [Petroleum ether: EtOAc] to give the
coupling product (4).
[6] N. Li, W. Y. Xin, B. R. Yao, C. H. Wang, W. Cong, F.
Zhao, H. J. Li, Y. Hou, Q. W. Meng, G. G. Hou,
European Journal of Medicinal Chemistry 2018, 147,
21-33.
[7] a) P. S. Watson, B. Jiang, B. Scott, Org. Lett. 2000, 2,
3679-3681. b) D. A. Horton, G. T. Bourne, M. L.
Smythe, Chem. Rev. 2003, 103, 893-930. c) M. E.
Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin.
Chem. Biol. 2010, 14, 347-361.
General procedure for synthesis of piperidones (9) from
coupling product (4)
[8]A. H. Aldmairi, C. G. Jones, A. Dupauw, L. Henderson,
D. W. Knight, Tetrahedron Letters 2017, 58, 3690–
3694.
In a well-stirred solution of coupling product (4)
in trifluoroethanol was added 4 (N) H2SO4 and the reaction
mixture was stirred at room temperature for 3 hours. Then
the reaction mixture was cooled below 20°C and basified
upto pH = 8 by dropwise addition of saturated NaHCO3
solution. Then the reaction mixture was allowed to stir at
0°C-20°C for 1-6 hours. After that the organic part was
separated by extraction with DCM and dried over
anhydrous Na2SO4. Evaporation of the organic solvent
followed by flash chromatography with silica gel and
eluted with 10-30% EtOAc in Petroleum ether afforded the
piperidones (9).
[9] S. Singh, V. K. Rai, P. Singh, L. S. Yadav, Synthesis
2010, 17, 2957-2964.
[10] a) J. D. Bell, A. H. Harkiss, C. R. Wellaway, A.
Sutherland, Org. Biomol. Chem. 2018, 16, 6410-6422.
b) A. H. Harkiss, A. Sutherland, J. Org. Chem. 2018,
83, 535-542.
[11] L. V. Adriaenssens, R. C. Hartley, J. Org. Chem.
2007, 72, 10287-10290.
[12] F. A. Davis, B. Chao, A. Rao, Org. Lett. 2001, 3 (20),
Acknowledgements
3169-3171.
[13] B. M. Trost, C.-I. Hung, J. Am. Chem. Soc. 2015, 137,
DS would to thank the Department of Science and
Technology (DST), Government of India (Grant No.
EEQ/2016/000518), INSPIRE-DST, Government of India
(Grant No.04/2013/000751) and NIT Rourkela for funding
support.
15940-15946.
[14] B. M. Trost, L. Krause, M. Portnoy, J. Am. Chem.
Soc. 1997, 119, 11319-11320.
[15] B. M. Trost, C. M. Older, Organometallics 2002, 21,
2544-2546.
References
[16] a) B. M. Trost, J. J. Cregg, J. Am. Chem. Soc. 2015,
137, 620−623. b) B. M. Trost, M. U. Frederiksen, M. T.
Rudd, Angew. Chem. Int. Ed. 2005, 44, 6630-6666.
[1] a) V. Baliah, R. Jeyaraman, L. Chandrasekaran, Chem.
Rev. 1983, 83, 379-423. b) S. Laschat, T. Dickner,
Synthesis 2000, 1781-1813. c) R. W. Bates, K. Sa-Ei,
Tetrahedron 2002, 58, 5957-5978. d) D. J. Faulkner,
Nat. Prod. Rep. 2002, 19, 1-48. e) I. Larrosa, P. Romea,
F. Urpi, Tetrahedron 2008, 64, 2683-2723.
[17] a) A. A. Reddy, P. O. Reddy, K. R. Prasad, J. Org.
Chem. 2016, 81, 11363-11371. b) L. S. Fowler, L. H.
Thomas, D. Ellis, A. Sutherland, Chem. Commun.,
2011, 47, 6569-6571. c) F. A. Davis, H. Xu, J. Zhang, J.
Org. Chem. 2007, 72, 2046-2052. d) M. Daly, A. A.
Cant, L. S. Fowler, G. L. Simpson, H. M. Senn, A.
Sutherland, J. Org. Chem. 2012, 77, 10001-10009. e) Y.
[2] a) P. M. Weintraub, J. S. Sabol, J. M. Kane, D. R.
Borcherding, Tetrahedron 2003, 59, 2953-2989. b) P.
5
This article is protected by copyright. All rights reserved.