Article
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 21 6801
for each compound allowed the linear relationship between
concentration and signal intensity (given as peak area ratio
analyte/IS). Acquisition and analysis of data were performed with
MS Workstation software (version 6.3.0 or higher). The degrada-
tion half-life (t1/2) values were calculated using the following
equation: t1/2 = 0.693/k where k is the first-order degradation rate
constant. The degradation rate constant (k) was estimated by one-
phase exponential decay nonlinear regression analysis of the
degradation time course data using Xlfit software (version 2.1.2
or higher).
(10) Flipo, M.; Beghyn, T.; Leroux, V.; Florent, I.; Deprez, B. P.;
Deprez-Poulain, R. F. Novel Selective Inhibitors of the Zinc
Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial
Agents. J. Med. Chem. 2007, 50 (6), 1322–1334.
(11) Chen, Y. F.; Lopex-Sanchez, M.; Savoy, D. N.; Billadieu, D. D.;
Dow, G. S.; Kozikowski, A. P. A series of potent and selective,
triazolylphenyl-based histone deacetylase inhibitors [HDACIs]
with activity against pancreatic cancer cells and Plasmodium
falciparum. J. Med. Chem. 2008, 51 (12), 3437–3448.
(12) (a) Charrier, C.; Clarhaut, J.; Gesson, J.-P.; Estiu, G.; Wiest, O.;
Roche, J.; Bertrand, P. Synthesis and Modeling of New Benzo-
furanone Histone Deacetylase Inhibitors that Stimulate Tumor
Suppressor Gene Expression. J. Med. Chem. 2009, 52 (9), 3112–
3115. (b) Smil, D. V.; Manku, S.; Chantigny, Y. A.; Leit, S.; Wahhab, A.;
Yan, T. P.; Fournel, M.; Maroun, C.; Li, Z.; Lemieux, A.-M.; Nicolescu,
Acknowledgment. We thank Virginie Leroux for technical
ꢀ
assistance and Pr. Andre Tartar for scientific discussion. We
are grateful to the institutions that support our laboratory
ꢀ
A.; Rahil, J.; Lefebvre, S.; Panetta, A.; Besterman, J. M.; Deziel,
R. Novel HDAC6 isoform selective chiral small molecule histone
deacetylase inhibitors. Bioorg. Med. Chem. Lett. 2009, 19 (3), 688–
692.
ꢀ
(Inserm, Universite Lille Nord de France, and Institut Pasteur
de Lille) and PRIM: Pole de Recherche Interdisciplinaire
^
(13) Becker, D. P.; Villamil, C. I.; Barta, T. E.; Bedell, L. J.; Boehm,
T. L.; DeCrescenzo, G. A.; Freskos, J. N.; Getman, D. P.;
Hockerman, S.; Heintz, R.; Howard, S. C.; Li, M. H.; McDonald,
J. J.; Carron, C. P.; Funckes-Shippy, C. L.; Mehta, P. P.; Munie,
G. E.; Swearingen, C. A. Synthesis and Structure-Activity Rela-
tionships of Beta- and Alpha-Piperidine Sulfone Hydroxamic
Acid Matrix Metalloproteinase Inhibitors with Oral Antitumor
Efficacy. J. Med. Chem. 2005, 48 (21), 6713–6730.
ꢀ
du Medicament. Data management was performed using
Pipeline Pilot from Accelrys. We also thank the following
institutions or companies: CAMPLP and VARIAN Inc. This
project was supported by the Fondation pour la Recherche
Medicale, Nord-Pas-de-Calais (RAD07001EEA).
(14) Lombart, H. G.; Feyfant, E.; Joseph-McCarthy, D.; Huang, A.;
Lovering, F.; Sun, L.; Zhu, Y.; Zeng, C.; Zhang, Y.; Levin,
J. Design and synthesis of 3,3-piperidine hydroxamate analogs as
selective TACE inhibitors. Bioorg. Med. Chem. Lett. 2007, 17 (15),
4333–4337.
(15) Puerta, D. T.; Lewis, J. A.; Cohen, S. M. New beginnings for matrix
metalloproteinase inhibitors: identification of high-affinity zinc-
binding groups. J. Am. Chem. Soc. 2004, 126 (27), 8388–8389.
(16) Pikul, S.; Ohler, N. E.; Ciszewski, G.; Laufersweiler, M. C.;
Almstead, N. G.; De, B.; Natchus, M. G.; Hsieh, L. C.; Janusz,
M. J.; Peng, S. X.; Branch, T. M.; King, S. L.; Taiwo, Y. O.;
Mieling, G. E. Potent and selective carboxylic acid-based inhibitors
of matrix metalloproteinases. J. Med. Chem. 2001, 44 (16), 2499–
2502.
(17) Suzuki, T.; Matsuura, A.; Kouketsu, A.; Hisakawa, S.; Nakagawa,
H.; Miyata, N. Design and synthesis of non-hydroxamate histone
deacetylase inhibitors: identification of a selective histone acetylat-
ing agent. Bioorg. Med. Chem. 2005, 13 (13), 4332.
(18) Nagaoka, Y.; Maeda, T.; Kawai, Y.; Nakashima, D.; Oikawa, T.;
Shimoke, K.; Ikeuchi, T.; Kuwajima, H.; Uesato, S. Synthesis and
cancer antiproliferative activity of new histone deacetylase inhibi-
tors: hydrophilic hydroxamates and 2-aminobenzamide-contain-
ing derivatives. Eur. J. Med. Chem. 2006, 41 (6), 697.
Supporting Information Available: Mass spectrometry para-
meters for each compound, example of plasma stability curve of
1 and enalapril, with or without PMSF, compound 9, prodrug 5,
structures and half-lives of hydroxamates found in the literature
(iv or po conditions), and experimental conditions for com-
pounds 1-3. This material is available free of charge via the
References
(1) A search within MDL Drug Data Report from Prous Science
Publisher, retrieves 1938 bioactive hydroxamates (June 2008).
(2) Lou, B.; Yang, K. Molecular diversity of hydroxamic acids. Part II.
Potential therapeutic applications. Mini Rev. Med. Chem. 2003,
3 (6), 609–20.
(3) Sieber, S. A.; Niessen, S.; Hoover, H. S.; Cravatt, B. F. Proteomic
profiling of metalloprotease activities with cocktails of active-site
probes. Nat. Chem. Biol. 2006, 2 (5), 274–281.
(4) Marmion, C. J.; Griffith, D.; Nolan, K. B. Hydroxamic Acids;An
Intriguing Family of Enzyme Inhibitors and Biomedical Ligands.
Eur. J. Inorg. Chem. 2004, 2004 (15), 3003–3016.
(19) Michaelides, M. R.; Dellaria, J. F.; Gong, J.; Holms, J. H.; Bouska,
J. J.; Stacey, J.; Wada, C. K.; Heyman, H. R.; Curtin, M. L.; Guo,
Y.; Goodfellow, C. L.; Elmore, I. B.; Albert, D. H.; Magoc, T. J.;
Marcotte, P. A.; Morgan, D. W.; Davidsen, S. K. Biaryl ether
retrohydroxamates as potent, long-lived, orally bioavailable MMP
inhibitors. Bioorg. Med. Chem. Lett. 2001, 11 (12), 1553–1556.
(20) Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. Rev. Drug
Discovery 2007, 6 (1), 21.
(21) Sanderson, L.; Taylor, G. W.; Aboagye, E. O.; Alao, J. P.; Latigo,
J. R.; Coombes, R. C.; Vigushin, D. M. Plasma pharmacokinetics
and metabolism of the histone deacetylase inhibitor trichostatin a
after intraperitoneal administration to mice. Drug Metab. Dispos.
2004, 32 (10), 1132–8.
(22) Obach, R. S. Potent inhibition of human liver aldehyde oxidase by
raloxifene. Drug Metab. Dispos. 2004, 32 (1), 89–97.
(23) Honohan, T.; Fitzpatrick, F. A.; Booth, D. G.; McGrath, J. P.;
Morton, D. R.; Nishizawa, E. Hydrolysis of an orally active
platelet inhibitory prostanoid amide in the plasma of several
species. Prostaglandins 1980, 19 (1), 123–136.
(5) Boularot, A.; Giglione, C.; Petit, S.; Duroc, Y.; Alves de Sousa,
R.; Larue, V.; Cresteil, T.; Dardel, F.; Artaud, I.; Meinnel, T.
Discovery and refinement of a new structural class of potent
peptide deformylase inhibitors. J. Med. Chem. 2007, 50 (1),
10–20.
(6) Capkova, K.; Yoneda, Y.; Dickerson, T. J.; Janda, K. D. Synthesis
and structure-activity relationships of second-generation hydro-
xamate botulinum neurotoxin A protease inhibitors. Bioorg. Med.
Chem. Lett. 2007, 17 (23), 6463.
(7) Yao, W.; Zhuo, J.; Burns, D. M.; Xu, M.; Zhang, C.; Li, Y. L.;
Qian, D. Q.; He, C.; Weng, L.; Shi, E.; Lin, Q.; Agrios, C.; Burn, T.
C.; Caulder, E.; Covington, M. B.; Fridman, J. S.; Friedman, S.;
Katiyar, K.; Hollis, G.; Li, Y.; Liu, C.; Liu, X.; Marando, C. A.;
Newton, R.; Pan, M.; Scherle, P.; Taylor, N.; Vaddi, K.;
Wasserman, Z. R.; Wynn, R.; Yeleswaram, S.; Jalluri, R.; Bower,
M.; Zhou, B. B.; Metcalf, B. Discovery of a Potent, Selective, and
Orally Active Human Epidermal Growth Factor Receptor-2 Shed-
dase Inhibitor for the Treatment of Cancer. J. Med. Chem. 2007,
50 (4), 603–606.
(24) Li, B.; Sedlacek, M.; Manoharan, I.; Boopathy, R.; Duysen, E. G.;
Masson, P.; Lockridge, O. Butyrylcholinesterase, paraoxonase,
and albumin esterase, but not carboxylesterase, are present in
human plasma. Biochem. Pharmacol. 2005, 70 (11), 1673.
(25) Weisburger, J. H.; Weisburger, E. K. Biochemical Formation and
Pharmacological, Toxicological, and Pathological Properties of
Hydroxylamines and Hydroxamic Acids. Pharmacol. Rev. 1973,
25 (1), 1–66.
(26) Du, L.; Musson, D. G.; Wang, A. Q. Stability studies of vorinostat
and its two metabolites in human plasma, serum and urine.
J. Pharm. Biomed. Anal. 2006, 42 (5), 556.
(27) Mulder, G. J.; Meerman, J. H. Sulfation and glucuronidation as
competing pathways in the metabolism of hydroxamic acids: the
(8) Noe, M. C.; Natarajan, V.; Snow, S. L.; Mitchell, P. G.;
Lopresti-Morrow, L.; Reeves, L. M.; Yocum, S. A.; Carty, T.
J.; Barberia, J. A.; Sweeney, F. J.; Liras, J. L.; Vaughn,
M.; Hardink, J. R.; Hawkins, J. M.; Tokar, C. Discovery of
3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibi-
tors of aggrecanase and MMP-13. Bioorg. Med. Chem. Lett.
2005, 15 (11), 2808.
(9) Zhu, Z.; Mazzola, R.; Sinning, L.; McKittrick, B.; Niu, X.;
Lundell, D.; Sun, J.; Orth, P.; Guo, Z.; Madison, V.; Ingram, R.;
Beyer, B. M. Discovery of Novel Hydroxamates as Highly Potent
Tumor Necrosis Factor-Converting Enzyme Inhibitors. Part I.
Discovery of Two Binding Modes. J. Med. Chem. 2008, 51 (4),
725–736.