ORGANIC
LETTERS
2009
Vol. 11, No. 21
4946-4949
Highly Enantioselective Catalytic
1,3-Dipolar Cycloaddition Involving
2,3-Allenoate Dipolarophiles
Jie Yu, Long He, Xiao-Hua Chen, Jin Song, Wei-Jie Chen, and Liu-Zhu Gong*
Hefei National Laboratory for Physical Sciences at the Microscale and Department of
Chemistry, UniVersity of Science and Technology of China, Hefei, 230026, China
Received September 10, 2009
ABSTRACT
A bisphosphoric acid-catalyzed 1,3-dipolar cycloaddition of buta-2,3-dienoates with azomethine ylides yields 3-methylenepyrrolidine derivatives
with excellent enantioselectivity (up to 97% ee).
Due to the widespread application of pyrrolidine-containing
compounds in the synthesis of important biologically active
natural and unnatural molecules, the development of efficient
synthetic methods to access this structural motif in an
optically active form has long been an important project in
organic chemistry.1 The enantioselective synthetic methods
commonly used include 1,3-dipolar addition reactions of
azomethine ylides to electronically deficient alkenes using
chiral auxiliaries, chiral metal complex catalysts, and re-
cently, chiral organocatalysts.2,3 These methods provide
elegant entries to pyrrolidine derivatives substituted with
saturated C-C chemical bonds. 3-Methylene-pyrrolidine
derivatives containing a C-C double bond that increases the
structural flexibility in view of a tremendous number of
reactions associated with olefins are undoubtedly important
in synthetic chemistry either as building blocks or as
intermediates.
(1) (a) Pearson, W. H. Studies in Natural Product Chemistry; Atta-Ur-
Rahman, Ed.; Elsevier: New York, 1998; Vol. 1, p 323; (b) Sardina, F. J.;
Rapoport, H. Chem. ReV. 1996, 96, 1825. (c) Coldham, I.; Hufton, R. Chem.
ReV. 2005, 105, 2765. (d) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem.
ReV. 2006, 106, 4484. (e) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
(2) For selected examples, see: (a) Longmire, J. M.; Wang, B.; Zhang,
X. J. Am. Chem. Soc. 2002, 124, 13400. (b) Gothelf, A. S.; Gothelf, K. V.;
Hazell, R. G.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 4236. (c)
Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. (d)
Kno¨pfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M.
Angew. Chem., Int. Ed. 2004, 43, 5971. (e) Cabrera, S.; Arraya´s, R. G.;
Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394. (f) Yan, X.-X.; Peng,
Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem.,
Int. Ed. 2006, 45, 1979. (g) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X.
J. Am. Chem. Soc. 2007, 129, 750. (h) Herna´ndez-Toribio, J.; Arraya´s, R. G.;
Mart´ın- Matute, B.; Carretero, J. C. Org. Lett. 2009, 11, 393. (i) Lo´pez-
Pe´rez, A.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48, 340.
(3) (a) Vicario, J. L.; Reboredo, S.; Badía, D.; Carrillo, L. Angew. Chem.,
Int. Ed. 2007, 46, 5168. (b) Ibrahem, I.; Rios, R.; Vesely, J.; Cordova, A.
Tetrahedron Lett. 2007, 48, 6252. (c) Xue, M.-X.; Zhang, X.-M.; Gong,
L.-Z. Synlett 2008, 691. (d) Liu, Y.-K.; Liu, H.; Du, W.; Yue, L.; Chen,
Y.-C. Chem. Eur. J. 2008, 14, 9873. (e) Nakano, M.; Terada, M. Synlett
2009, 1670.
(4) For reviews: (a) Ma, S. Aldrichimica Acta 2007, 40, 91. (b) Ma, S.
Chem. ReV. 2005, 105, 2829. (c) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem.
Res. 2001, 34, 535. For selected examples, see: (d) Zhang, C.; Lu, X. J.
Org. Chem. 1995, 60, 2906. (e) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.;
Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836. (f) Wilson, J. E.;
Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426. (g) Cower, B. J.; Miller,
S. J. J. Am. Chem. Soc. 2007, 129, 10988. (h) Zhu, X.-F.; Lan, J.; Known,
O. J. Am. Chem. Soc. 2003, 125, 4716. (i) Wurz, R. P.; Fu, G. C. J. Am.
Chem. Soc. 2005, 127, 12234. (j) Fang, Y. Q.; Jacobsen, E. N. J. Am. Chem.
Soc. 2008, 130, 5660. (k) Voituriez, A.; Panossian, A.; Fleury-Bre´geot, N.;
Retailleau, P.; Marinetti, A. J. Am. Chem. Soc. 2008, 130, 14030.
10.1021/ol9020964 CCC: $40.75
Published on Web 10/08/2009
2009 American Chemical Society