C O M M U N I C A T I O N S
the structural information obtained from ion mobility separation.
The recently introduced second generation Synapt G2 platform
provides enhanced ion mobility and mass resolution. Combination
of ESI with ion mobility separation and tandem MS fragmentation
are therefore expected to have a significant impact on supramo-
lecular characterizations.
Acknowledgment. We thank the NSF for generous financial
support (Grants CHE-0517909 and 0833087 to C.W., DMR-
0705015 to G.R.N., and DMR-0821313 for the purchase of the
TWIM-MS instrument).
Supporting Information Available: Synthetic procedures, NMR
data, complete ESI mass spectra, and tables of the possible charge states
and mass-to-charge ratios.This material is available free of charge via
Figure 3. Two-dimensional ESI-TWIM-MS plot for m/z 1604. (A)
Complex 5 analyzed at a traveling wave height of 10.5 V and velocity of
380 m/s. Ion mobility separation gave signals at 10.11, 4.78, 3.61, and 2.71
ms, corresponding to linear [2L+2Cd]1+, linear [4L+4Cd]2+, cyclic
[6L+6Cd]3+, and linear [8L+8Cd]4+, respectively. The observed isotope
patterns (shown) match closely those calculated for the given compositions.
(B) Complex 6 analyzed under the same conditions. Ion mobility separation
showed signals at 15.43, 11.73, 6.50, and 4.24 ms, corresponding to linear
[2L+2Cd]1+, [2L+2Cd]1+, [4L+4Cd]2+, and [6L+6Cd]3+, respectively.
References
(1) Supramolecular Chemistry: Concepts and PerspectiVes; Lehn, J.-M.; VCH:
Weinheim, 1995.
(2) (a) Lehn, J. M. Chem.sEur. J. 1999, 5, 2455. (b) Lehn, J. M. Science
2002, 295, 2400. (c) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine,
L. H.; Lehn, J. M. Angew. Chem., Int. Ed. 2004, 43, 3644.
(3) (a) Northrop, B. H.; Yang, H. B.; Stang, P. J. Chem. Commun. 2008, 5896.
(b) Li, S. S.; Northrop, B. H.; Yuan, Q. H.; Wan, L. J.; Stang, P. J. Acc.
Chem. Res. 2009, 42, 249. (c) Northrop, B. H.; Zheng, Y. R.; Chi, K. W.;
Stang, P. J. Acc. Chem. Res. 2009,in press (DOI: 10.1021/ar900077c).
(4) (a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005,
38, 369. (b) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem.,
Int. Ed. 2009, 48, 3418.
(5) (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
(b) Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005,
38, 825. (c) Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A.
Acc. Chem. Res. 2008, 41, 1618.
building blocks, there is a general trend for such species to form
hexameric macrocycles, which are geometrically most easily
accessible. Thus, the [8L+8Cd]4+ ions most likely have linear
shapes. For the [6L+6Cd]3+ ions, both linear and cyclic conformers
can exist; however, only one shape is observed or the two shapes
were not resolved. As discussed above, the charge state 4+, i.e.
[6L+6Cd]4+ at m/z 1188, contains much more cyclic than linear
isomers. Consequently, cyclic [6L+6Cd]3+ should be the major
species of the 3+ charge state of m/z 1604 as well. The drift time
of linear [6L+6Cd]3+ ions might be very close to that of the
[4L+4Cd]2+ fragments. Any minor amount of linear [6L+6Cd]3+
would then drift out between the cyclic [6L+6Cd]3+ and linear
[4L+4Cd]2+ species, i.e. within the 3.61-4.78 ms time window.
Also m/z 1604 from 6 was analyzed by TWIM-MS (Figure 3B).
Ion mobility separation showed signals at 4.24, 6.50, 11.73, and
(6) (a) Lee, S. J.; Lin, W. Acc. Chem. Res. 2008, 41, 521. (b) Kumar, A.; Sun,
S. S.; Lees, A. J. Coord. Chem. ReV. 2008, 252, 922. (c) Constable, E. C.
Coord. Chem. ReV. 2008, 252, 842.
(7) (a) Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Baker, G. R.; Saunders,
M. J.; Cush, R.; Russo, P. S. Angew. Chem., Int. Ed. 1999, 38, 3717. (b)
Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Cush, R.; Russo, P. S.;
Godinez, L. A.; Saunders, M. J.; Mohapatra, P. Chem.sEur. J. 2002, 8,
2946. (c) Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Mohapatra, P. P.;
Godinez, L. A. Chem.sEur. J. 2004, 10, 1493. (d) Hwang, S.-H.;
Moorefield, C. N.; Wang, P.; Kim, J.-Y.; Lee, S.-W.; Newkome, G. R.
Inorg. Chim. Acta 2007, 360, 1780.
(8) (a) Wang, P.; Newkome, G. R.; Wesdemiotis, C. Int. J. Mass Spectrom.
2006, 255-256, 86. (b) Engeser, M.; Rang, A.; Ferrer, M.; Gutierrez, A.;
Baytekin, H. T.; Schalley, C. A. Int. J. Mass Spectrom. 2006, 255-256,
185. (c) Ghosh, K.; Hu, J.; White, H. S.; Stang, P. J. J. Am. Chem. Soc.
2009, 131, 6695.
15.43 ms corresponding to linear [6L+6Cd]3+, [4L+4Cd]2+
,
[2L+2Cd]1+, and [2L+2Cd]1+, respectively. The isotope patterns
closely matched those calculated for each of these charge states.
This time, no signal for [8L+8Cd]4+ was observed in the spectrum.
The reason could be that long strains of linear complexes decompose
readily upon ionization and ion mobility separation. Because of
the 180°-angle of building blocks in 6, its ions show longer drift
times than the corresponding ions from 5, as also observed for m/z
1188. It is noteworthy that no signal is observed around 3.61 ms
confirming the cyclic shape for [6L+6Cd]3+ from 5. Based on this
comparison, linear [6L+6Cd]3+ ions with 120°-angle monomers
should drift out between cyclic [6L+6Cd]3+ with 120°-angle
building blocks and linear [6L+6Cd]3+ with 180°-angle building
blocks, viz. between 3.61 and 4.24 ms. For the linear [2L+2Cd]1+
fragment from 6, two isomers were observed; their structures are
currently under investigation.
In conclusion, we have successfully synthesized hexagonal
metallomacrocycles and linear polymers by using the labile tpy-
Cd(II)-tpy connectivity and showed that ion mobility separation
enhances the resolving power of mass spectrometry by adding
shape-dependent dispersion. This provides the possibility to identify
isomeric structures in supramolecular assemblies. Further, TWIM-
MS completely deconvolutes the isotope patterns of different charge
states and avoids the isomer superposition prevalent in regular ESI-
MS or FTMS. Tandem mass spectrometry experiments confirmed
(9) (a) Sakamoto, S.; Fujita, M.; Kim, K.; Yamaguchi, K. Tetrahedron 2000,
56, 955. (b) Yamaguchi, K. J. Mass Spectrom. 2003, 38, 473.
(10) Schalley, C. A.; Muller, T.; Linnartz, P.; Witt, M.; Schafer, M.; Lutzen,
A. Chem.sEur. J. 2002, 8, 3538.
(11) Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.;
Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. Int. J.
Mass Spectrom. 2007, 261, 1.
(12) (a) Von Helden, G.; Hsu, M.-T.; Kemper, P. R.; Bowers, M. T. J. Chem.
Phys. 1991, 95, 3835. (b) Bowers, M. T.; Kemper, P. R.; von Helden, G.;
van Koppen, P. A. M. Science 1993, 260, 1446. (c) Clemmer, D. E.; Jarrold,
M. F. J. Mass Spectrom. 1997, 32, 577. (d) Hoaglund-Hyzer, C. S.;
Counterman, A. E.; Clemmer, D. E. Chem. ReV. 1999, 99, 3037. (e)
Verbeck, G. F.; Ruotolo, B. T.; Sawyer, H. A.; Gillig, K. J.; Russel, D. H.
J. Biomol. Tech. 2002, 13, 56. (f) Valentine, S. J.; Plasencia, M. D.; Liu,
X.; Krishnan, M.; Naylor, S.; Udseth, H. R.; Smith, R. D.; Clemmer, D. E.
J. Proteom. Res. 2006, 5, 2977. (g) Fenn, L. S.; McLean, J. A. Anal.
Bioanal. Chem. 2008, 391, 1618. (h) Ruotolo, B. T.; Benesch, J. L. P.;
Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Nat. Protoc. 2008, 3,
1139. (i) Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H. J. Mass
Spectrom. 2008, 43, 1. (j) Bohrer, B. C.; Merenbloom, S. I.; Koeniger,
S. L.; Hilderbrand, A. E.; Clemmer, D. E. Annu. ReV. Anal. Chem. 2008,
1, 293.
(13) (a) Trimpin, S.; Plasencia, D. I.; Clemmer, D. E. Anal. Chem. 2007, 79,
7965. (b) Anderson, S. E.; Bodzin, D. J.; Haddad, T. S.; Boatz, J. A.; Mabry,
J. M.; Mitchell, C.; Bowers, M. T. Chem. Mater. 2008, 20, 4299. (c)
Trimpin, S.; Clemmer, D. E. Anal. Chem. 2008, 80, 9073. (d) Hilton, G. R.;
Jackson, A. T.; Thalassinos, K.; Scrivens, J. H. Anal. Chem. 2008, 80,
9720. (e) Gies, A. P.; Kliman, M.; McLean, J. A. Macromolecules 2008,
41, 8299.
(14) ; Schubert, U. S.; Hofmeier, H.; Newkome, G. R. Modern Terpyridine
Chemistry; Wiley-VCH: Weinheim, 2006.
(15) Cave, G. W. V.; Raston, C. L. J. Chem. Soc., Perkin Trans. 1 2001, 3258.
JA907262C
9
J. AM. CHEM. SOC. VOL. 131, NO. 45, 2009 16397