washed with alcohol and acetone, and dried at 60 ◦C for 24 h in a
vacuum oven.
6 (a) Z. Janas, L. B. Jerzykiewicz, R. L. Richards and P. Sobota, Chem.
Commun., 1999, 11, 1105–1106; (b) Z. Janas, L. B. Jerzykiewicz, S.
Przybylak, R. L. Richards and P. Sobota, Organometallics, 2000, 19,
4252–4257; (c) Z. Janas, D. Wisniewska, L. B. Jerzykiewicz, P. Sobota,
K. Drabent and K. Szczegot, Dalton Trans., 2007, 2065–2069; (d) D.
Homden, C. Redshaw, L. Warford, D. L. Hughes, J. A. Wright, S. H.
Dale and M. R. J. Elsegood, Dalton Trans., 2009, 8900–8910; (e) A.
Arbaoui, C. Redshaw, D. M. Homden, J. A. Wright and M. R. J.
Elsegood, Dalton Trans., 2009, 8911–8922.
7 (a) C. Cuomo, S. Milione and A. Grassi, J. Polym. Sci., Part A: Polym.
Chem., 2006, 44, 3279–3289; (b) S. Milione, G. Cavallo, C. Tedesco and
A. Grassi, J. Chem. Soc., Dalton Trans., 2002, 1839–1846.
8 M. Bialek and O. Liboska, J. Polym. Sci., Part A: Polym. Chem., 2010,
48, 471–478.
9 (a) Y. Nakayama, H. Bando, Y. Sonobe, Y. Suzuki and T. Fujita, Chem.
Lett., 2003, 32, 766–767; (b) Y. Nakayama, H. Bando, Y. Sonobe and
T. Fujita, J. Mol. Catal. A:Chem., 2004, 213, 141–150; (c) H. Makio, N.
Kashiwa and T. Fujita, Adv. Synth. Catal., 2002, 344, 477–493; (d) M.
Mitani, T. Nakano and T. Fujita, Chem.–Eur. J., 2003, 9, 2396–2403.
10 J. Tian, P. D. Hustad and G. W. Coates, J. Am. Chem. Soc., 2001, 123,
5134–5135.
11 (a) V. C. Gibson, S. Mastroianni, C. Newton, C. Redshaw, G. A. Solan,
A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 2000,
1969–1971; (b) D. J. Jones, V. C. Gibson, S. Green and P. J. Maddox,
Chem. Commun., 2002, 1038–1039.
Crystallographic studies
Crystals for X-ray analysis were obtained as described in the
preparations. The crystallographic data, collection parameters,
and refinement parameters are listed in Table 1. The crystals were
manipulated in a glovebox. The intensity data were collected with
the x scan mode (186 K) on a Bruker Smart APEX diffractometer
with CCD detector using Mo-Ka radiation (l = 0.71, 073 E).
Lorentz, polarization factors were made for the intensity data and
absorption corrections were performed using SADABS program.
The crystal structures were solved using the SHELXTL program
and refined using full matrix least squares. The positions of
hydrogen atoms were calculated theoretically and included in the
final cycles of refinement in a riding model along with attached
carbons.
DFT calculations
12 C. Wang, S. Friedrich, T. R. Younkin, R. T. Li, R. H. Grubbs, D. A.
Bansleben and M. W. Day, Organometallics, 1998, 17, 3149–3151.
13 J. Houghton, S. Simonovic, A. C. Whitwood, R. E. Douthwaite, S. A.
Carabineiro, J. C. Yuan, M. M. Marques and P. T. Gomes, J. Organomet.
Chem., 2008, 693, 717–724.
In order to predict the structures of complexes 2a–e, we employed
density functional theory (DFT) calculations for the dissociation
energies by using the Amsterdam Density Functional (ADF)
program package.22 The structures and energies are obtained
based on the local density approximation augmented with Becke’s
nonlocal exchange corrections23 and Perdew’s nonlocal correlation
correction.24 A triple STO basis set was employed for V, while all
other atoms were described by a double-z plus polarization STO
basis. The 1s electrons of the C, N and O atoms, as well as the
1s–2p electrons of Cl and V atoms, were treated as frozen core.
Finally, first-order scalar relativistic corrections were added to the
total energy of the system.
14 (a) H. Tsurugi, T. Yamagata, K. Tani and K. Mashima, Chem. Lett.,
2003, 32, 756–757; (b) H. Tsurugi, Y. Matsuo, T. Yamagata and K.
Mashima, Organometallics, 2004, 23, 2797–2805; (c) Y. Matsuo, K.
Mashima and K. Tani, Organometallics, 2001, 20, 3510–3518.
15 (a) V. C. Gibson, P. J. Maddox, C. Newton, C. Redshaw, G. A. Solan,
A. J. P. White and D. J. Williams, Chem. Commun., 1998, 1651–1652;
(b) V. C. Gibson, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White
and D. J. Williams, J. Chem. Soc., Dalton Trans., 2002, 4017–4023.
16 (a) Y. Yoshida, S. Matsui, Y. Takagi, M. Mitani, T. Nakano, H. Tanaka,
N. Kashiwa and T. Fujita, Organometallics, 2001, 20, 4793–4799; (b) S.
Matsui, T. P. Spaniol, Y. Takagi, Y. Yoshida and J. Okuda, J. Chem.
Soc., Dalton Trans., 2002, 4529–4531; (c) S. Matsui, Y. Yoshida, Y.
Takagi, T. P. Spaniol and J. Okuda, J. Organomet. Chem., 2004, 689,
1155–1164.
Acknowledgements
17 D. M. Dawson, D. A. Walker, P. M. Thornton and M. Bochmann,
J. Chem. Soc., Dalton Trans., 2000, 459–466.
The authors are grateful for subsidy provided by the National Nat-
ural Science Foundation of China (Nos. 20734002 and 20923003).
18 (a) L. M. Tang, J. Q. Wu, Y. Q. Duan, L. Pan, Y. G. Li and Y. S. Li,
J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 2038–2048; (b) J. Q.
Wu, B. X. Li, S. W. Zhang and Y. S. Li, J. Polym. Sci., Part A: Polym.
Chem., 2010, 48, 3062–3072; (c) J. Q. Wu, L. Pan, Y. G. Li, S. R. Liu
and Y. S. Li, Organometallics, 2009, 28, 1817–1825; (d) J. S. Mu, J. Y.
Liu, S. R. Liu and Y. S. Li, Polymer, 2009, 50, 5059–5064; (e) J. Q. Wu,
L. Pan, N. H. Hu and Y. S. Li, Organometallics, 2008, 27, 3840–3848;
(f) J. Q. Wu, L. Pan, S. R. Liu, L. P. He and Y. S. Li, J. Polym. Sci., Part
A: Polym. Chem., 2009, 47, 3573–3582.
19 B. C. Xu, T. Hu, J. Q. Wu, N. H. Hu and Y. S. Li, Dalton Trans., 2009,
8854–8863.
20 E. T. Hsieh and J. C. Randall, Macromolecules, 1982, 15, 1402–1406.
21 Y. Matsuo, H. Tsurugi, T. Yamagata, K. Tani and K. Mashima, Bull.
Chem. Soc. Jpn., 2003, 76, 1965–1968.
22 (a) E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41–
51; (b) E. J. Baerends and P. Ros, Chem. Phys., 1973, 2, 52–59; (c) G.
te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 8498–8503;
(d) C. G. Fonseca, O. Visser, J. G. Snijders, G. te Velde, E. J. Baerends,
in Methods and Techniques in Computational Chemistry, METECC-95,
E. Clementi, G. Corongiu, ed.; STEF, Cagliari, Italy, 1995, p 305.
23 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–3100.
24 J. P. Perdew, Phys. Rev. B, 1986, 33, 8822–8824.
References
1 For reviews see: (a) S. Gambarotta, Coord. Chem. Rev., 2003, 237, 229–
243; (b) H. Hagen, J. Boersma and G. van Koten, Chem. Soc. Rev.,
2002, 31, 357–364; (c) L. S. Boffa and B. M. Novak, Chem. Rev., 2000,
100, 1479–1493; (d) C. Redshaw, Dalton Trans., 2010, 39, 5595–5604;
(e) K. Nomura and S. Zhang, Chem. Rev., DOI: 10.1021/cr100207h.
2 (a) Y. L. Ma, D. Reardon, S. Gambarotta and G. Yap, Organometallics,
1999, 18, 2773–2781; (b) D. Reardon, F. Conan, S. Gambarotta, G. Yap
and Q. Y. Wang, J. Am. Chem. Soc., 1999, 121, 9318–9325.
3 (a) H. Hagen, C. Bezemer, J. Boersma, H. Kooijman, M. Lutz, A. L.
Spek and G. van Koten, Inorg. Chem., 2000, 39, 3970–3977; (b) H.
Hagen, J. Boersma, M. Lutz, A. L. Spek and G. van Koten, Eur. J. Inorg.
Chem., 2001, 117–123.
4 (a) A. K. Tomov, V. C. Gibson, D. Zaher, M. Elsegood and S. H.
Dale, Chem. Commun., 2004, 1956–1957; (b) C. Redshaw, L. Warford,
S. H. Dale and M. R. J. Elsegood, Chem. Commun., 2004, 1954–
1955.
25 (a) D. L. Christman, J. Polym. Sci., Part A-1, 1972, 10, 471; (b) H.
Hagen, J. Boersma and G. van Koten, Chem. Soc. Rev., 2002, 31, 357–
364.
5 (a) E. Brussee, A. Meetsma, B. Hessen and J. H. Teuben, Chem.
Commun., 2000, 497–498; (b) E. Brussee, A. Meetsma, B. Hessen and
J. H. Teuben, Organometallics, 1998, 17, 4090–4095.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 3490–3497 | 3497
©