3532
H. Choi et al. / Journal of Organometallic Chemistry 694 (2009) 3529–3532
[6] (a) T.J. Seiders, K.K. Baldridge, J.M. O’Connor, J.S. Siegel, Chem. Commun.
(2004) 950;
figuration despite the presence of steric crowding at the endo-po-
sition. The structure of 2 in the solid state is consistent with the
data of 1H and 31P NMR. Based on our observation and illustration,
we believe that the bowl depth of corannulene plays a key role in
(b) M.A. Petrukhina, K.W. Andreini, V.M. Tsefrikas, L.T. Scott, Organometallics
24 (2005) 1394;
(c) S. Samdal, L. Hedberg, K. Hedberg, A.D. Richardson, M. Bancu, L.T. Scott, J.
Phys. Chem. A 107 (2003) 411.
the determination of molecular geometry in
ar complexes bearing corannulene.
r-bonded pentanucle-
[7] H.B. Lee, P.R. Sharp, Organometallics 24 (2005) 4875.
[8] B. Zhu, A. Ellern, A. Sygula, R. Sygula, R.J. Angelici, Organometallics 26 (2007)
1721.
[9] Y. Sevryugina, A.Y. Rogachev, E.A. Jackson, L.T. Scott, M.A. Petrukhina, J. Org.
Chem. 71 (2006) 6615.
In summary, an oxidative addition reaction of 1,3,5,7,9-penta-
chlorocorannulene with Pt(PEt3)4 afforded an interesting platinum
r
-bonded derivative of corannulene. The crystal structure for 1
[10] General considerations: All experiments were performed under dry N2
atmosphere using standard Schlenk technique. All solvents were freshly
distilled over appropriate drying reagents prior to use. All starting materials
were purchased from either Aldrich or Strem and used without further
purification. 1H NMR were recorded on a Varian 300 MHz spectrometer and
phosphorus resonance was referenced with respect to external 85% H3PO4.
Preparation of 1: To a stirred solution of Pt(PEt3)4 (0.63 g, 0.94 mmol) in
freshly distilled toluene (60 mL) under nitrogen was added, in portions,
1,3,5,7,9-pentachlorocorannulene (40 mg, 0.09 mmol). The resulting bright red
solution was then maintained for 3 days in an oil bath at 130 °C. The solvent
was removed in vacuo at 40 °C, and the residue was suspended in methanol
(15 mL) and gently refluxed for 45 min. The suspension was allowed to cool.
The product was collected on a frit and washed with cold methanol (5 mL Â 2)
to give 1 as a yellow solid. Yield: 0.12 g (52%); mp 283 °C; 1H NMR (CDCl3): d
8.00 (s, 1H), 7.92 (d, JPH = 8.4 Hz, 1H), 7.88 (s, 1H), 7.82 (s, 1H), 7.78 (s, 1H),
2.02-1.52 (m, 54H), 1.27–0.99 (m, 81H), 0.80 (m, 6H), 0.56 (t, J = 8.0 Hz, 9H);
consists of two enantiomers in a unit cell and shows both cis-
and trans-configurations around Pt ions due to the steric conges-
tion of bulky ligands. Compound 1 readily reacts with 1-ethynyl-
4-nitrobenzene to afford the penta-alkynyl substituted corannu-
lene with trans-configuration around platinum. The bulky periphe-
ral substituents cause a flattening of the bowl.
Acknowledgment
This work was supported by the Korea Science and Engineering
Foundation (KOSEF) through the National Research Lab. Program
funded by the Ministry of Science and Technology (No. ROA-
2005-000-10034-0), WCU (the Ministry of Education and Science)
Program (No. R31-2008-000-10035-0), and BK-21 (2006).
1
31P{1H}NMR (CDCl3): d 9.50 (s with satellites, JPtP = 2742 Hz), 9.19 (s with
1
1
satellites, JPtP = 2728 Hz), 8.37 (s with satellites, JPtP = 2736 Hz), 7.86 (s with
1
1
1
satellites, JPtP = 2748 Hz), 4.98 (d with satellites, JPtP = 1678, JPP = 11.8 Hz),
1
1
À0.78 (d with satellites, JPtP = 1678 Hz, JPP = 11.8 Hz), À0.76 (d with
1
1
satellites, JPtP = 1678 Hz, JPP = 11.8 Hz); Elemental analysis Calc. for C80H155
-
Appendix A. Supplementary material
Cl5P10Pt5: C, 37.25; H, 6.06. Found: C, 36.98; H, 5.96.
[11] Crystal data for 1: C80H155Cl5P10Pt5, Mr = 5158.88, crystal dimensions
0.18 Â 0.07 Â 0.04 mm3, monoclinic, space group P21/n, a = 38.946(8),
CCDC 609288 contains the supplementary crystallographic data
for 1. These data can be obtained free of charge from The Cam-
article can be found, in the online version, at doi:10.1016/
b = 14.601(3),
calcd = 1.634 g cmÀ3
index range: À47 6 h 6 47, À17 6 k 6 17, À47 6 l 6 47,
39820 measured reflection, 1772 independent reflection, R1 = 0.0692,
wR2 = 0.1584 (I > 2 (I)), GOF = 1.007.
c = 39.197(8) Å,
b = 109.85(3)°,
) = 0.71073 Å, T = 233(2) K, 2hmax = 51.36°,
V = 20965(7) Å3,
Z = 4,
q
,
k
(Mo
K
a
l
= 6.964 mmÀ1
,
r
[12] S. Higashibayashi, H. Sakurai, J. Am. Chem. Soc. 130 (2008) 8592.
[13] H. Sakane, T. Amaya, T. Moriuchi, T. Hirao, Angew. Chem., Int. Ed. 48 (2009)
1640.
[14] (a) R.C. Haddon, L.T. Scott, Pure Appl. Chem. 58 (1986) 137;
(b) R.C. Haddon, Acc. Chem. Res. 21 (1988) 243;
References
(c) R.C. Haddon, Science 261 (1993) 1545.
[1] M.A. Petrukhina, Angew. Chem., Int. Ed. 47 (2008) 1550 (and references cited
therein).
[2] (a) T.J. Seiders, K.K. Baldridge, J.M. O’Connor, J.S. Siegel, J. Am. Chem. Soc. 119
(1997) 4781;
[15] (a) J.C. Hanson, C.E. Nordman, Acta Crystallogr., Sect. B (1976) 1147;
(b) L. Hedberg, K. Hedberg, P.-C. Cheng, L.T. Scott, J. Phys. Chem. A 104 (2000)
7689.
[16] T.J. Seiders, K.K. Baldridge, G.H. Grube, J.S. Siegel, J. Am. Chem. Soc. 123 (2001)
517.
(b) C.M. Alvarez, R.J. Angelici, A. Sygula, R. Sygula, P.W. Rabideau, Organo-
metallics 22 (2003) 624;
(c) M.V. Frash, A.C. Hopkinson, D.K. Böhme, J. Am. Chem. Soc. 123 (2001) 6687;
(d) M.A. Petrukhina, K.W. Andreini, J. Mack, L.T. Scott, Angew. Chem., Int. Ed.
42 (2003) 3375;
[17] Preparation of 2: To a stirred solution of 1 (0.10 g, 0.038 mmol) and 1-ethynyl-
4-nitrobenzene (57 mg, 0.387 mmol) in diethylamine (15 mL) was added CuI
(1.8 mg) in toluene (15 mL). The reaction was stirred in the dark for 24 h. A
white precipitate of diethylammonium iodide was appeared. The solvent was
removed on a rotatory evaporator, and the product was purified by column
chromatography on silica gel (eluent: ethylacetate/hexane, 1:2). The pure
product was obtained by recrystallization from a toluene/hexane solution.
Yield: 0.072 g (60%); mp 175 °C; 1H NMR (CDCl3): d 8.10 (d, J = 9.0 Hz, 10H),
7.73 (s, 5H), 7.34 (d, J = 9.0 Hz, 10H), 1.79 (br, 60H), 1.06 (m, 90H);
13C{1H}NMR (CDCl3): d 148.6, 148.1, 144.3 (d), 138.8, 137.1, 136.4, 131.7,
130.8, 128.4, 123.8, 110.1, 108.4, 16.2 (d), 8.3; 31P{1H}NMR (CDCl3): d 6.4 (s
(e) P.A. Vecchi, C.M. Alvarez, A. Ellern, R.J. Angelici, A. Sygula, R. Sygula, P.W.
Rabideau, Angew. Chem., Int. Ed. 43 (2004) 4497.
[3] (a) L.T. Scott, M.M. Hashemi, M.S. Bratcher, J. Am. Chem. Soc. 114 (1992) 1920;
(b) T.J. Seiders, K.K. Baldridge, J.S. Siegel, J. Am. Chem. Soc. 118 (1996) 2754;
(c) A. Sygula, A.H. Abdourazak, P.W. Rabideau, J. Am. Chem. Soc. 118 (1996)
339.
[4] (a) L.T. Scott, Pure Appl. Chem. 68 2 (1996) 291;
(b) A. Sygula, P.W. Rabideau, J. Am. Chem. Soc. 122 (2000) 6323;
(c) R. Benshafrut, E. Shabtai, M. Rabinovitz, L.T. Scott, Eur. J. Org. Chem. (2000)
1091;
with satellites, 1JPtP = 2660 Hz); Elemental analysis calc. for C120H175N5O10P10
Pt5: C, 46.01; H, 5.63. Found: C, 45.87; H, 5.48.
[18] In the case of 2, the bowl depth is hardly obtained by the way of the same
method for measuring the depth in 1, because the carbon atoms of
corannulene are disordered.
-
(d) A. Sygula, G. Xu, Z. Marcinow, P.W. Rabideau, Tetrahedron 57 (2001) 3637;
(e) P.E. Georghiou, A.H. Tran, S. Mizyed, M. Bancu, L.T. Scott, J. Org. Chem. 70
(2005) 6158.
[5] P.U. Biedermann, S. Pogodin, I. Agranat, J. Org. Chem. 64 (1999) 3655.