pubs.acs.org/joc
Glycosylation Using Unprotected Alkynyl Donors
Sreeman K. Mamidyala* and M.G. Finn*
Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 N.
Torrey Pines Rd., La Jolla, California 92037
sreeman@scripps.edu; mgfinn@scripps.edu
Received September 8, 2009
FIGURE 1. Synthesis of glycosides by the activation of propargyl
donors 1-3 with AuCl3.
TABLE 1. Effect of Various Reaction Parameters for Au(III)-Cata-
lyzed Glycosylation Reactionsa
temp
(°C)
time
(h)
yield
(%)c
entry donor acceptorb solvent
R:β
Gold(III) activation of unprotected propargyl glycosyl
donors has been shown to be effective for the synthesis of
saccharides. Terminal propargyl glycosides of glucose,
galactose, and mannose required heating at reflux in
acetonitrile with 5% AuCl3 for reaction with various
primary alcohol acceptors, the latter used in 10-fold
molar excess relative to donor. Donors containing the
2-butynyl group were more reactive, giving good yields of
glycoside products at lower temperatures. Secondary
alcohols could also be used but with diminished effi-
ciency. The propargylic family of donors is especially
convenient because they can be easily prepared on large
scale by Fischer glycosylation and stored indefinitely
before chemoselective activation by the catalyst.
1
2
3
4
5
6
7
8
1
1
1
1
1
1
1
1
4
4
4
4
4
4
4
4
MeCN
MeCN
MeCN
MeNO2
DMF
THF
rt
60
82
82
82
82
82
82
24
12
4
0
0
60
25
0
32
35
15
1.5:1
2.3:1
4
24
1.5d
2d
4
3.0:1
3.0:1
2.3:1
neat
MeCN
(2 equiv)
aIn all cases AuCl3 was used at 5 mol % with respect to donor. bUnless
otherwise specified, 10 equiv was used with respect to donor. cIsolated
yields of chromatographically purified products. dHeating for longer
periods gave the same or lower yields.
Among recent developments have been the discovery of
novel glycosyl donors,10 adding to the repertoire of more
established reagents such as trichloroacetamidates,11 halides,12
sulfoxides,13 glycols,14 phosphates,15 phosphites,16 n-pentenyl
glycosides,17 and thioglycosides.18-20 A significant difficulty
with many popular reagents is the need for protection and
Carbohydrates are important components of glycolipids and
glycoproteins, playing key roles in cell-cell communication,
cell adhesion, development, differentiation, and immune re-
sponse and in disease processes such as inflammation, tumor
metastasis, and pathogen infection.1-5 Thus the synthesis of
carbohydrates and their analogues may provide novel thera-
peutic agents and diagnostic tools.6-9Although revolutionary
advances have been made in carbohydrate synthesis in recent
years, oligosaccharide synthesis remains far more difficult than
the modular assembly of oligopeptides and oligonucleotides as
a result of the extraordinary complexity of glycan structures.
(10) For reviews on glycoside synthesis, see: (a) Smoot, J. T.; Demchenko,
A. V. Adv. Carbohydr. Chem. Biochem. 2009, 62, 161–250. (b) Zhu, X.;
Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900–1934. (c) Demchenko,
A. V., Handbook of Chemical Glycosylation, Wiley-VCH, Weinheim, 2008;
(d) Galonic, D. P.; Gin, D. Y. Nature 2007, 446, 1000–1007. (e) Toshima, K.
Carbohydr. Res. 2006, 341, 1282–1297. (f) Demchenko, A. V. Synlett 2003,
1225–1240. (g) Jensen, K. J. J. Chem. Soc. Perkin Trans. 1 2002, 2219–2233.
(h) Davis, B. G. J. Chem. Soc. Perkin Trans. 1 2000, 2137–2160.
(11) Schmidt, R. R.; Kinzy, W. Adv. Carbohyd. Chem. Biochem. 1994, 50,
21–123.
(12) Shimizu, M.; Togo, H.; Yokoyama, M. Synthesis 1998, 799–822.
(13) Kahne, D.; Walker, S.; Cheng, Y.; van Engen, D. J. Am. Chem. Soc.
1989, 111, 6881–6882.
(14) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35,
1380–1419.
(15) Hashimoto, S.; Honda, T.; Ikegami, S. J. Chem. Soc., Chem. Com-
mun. 1989, 685–687.
(1) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357–2364.
(2) Zachara, N. E.; Hart, G. W. Chem. Rev. 2002, 102, 431–438.
(3) Roth, J. Chem. Rev. 2002, 102, 285–304.
(4) Collins, B. E.; Paulson, J. C. Curr. Opin. Chem. Biol. 2004, 8, 617–625.
(5) Gabius, H.-J.; Siebert, H.-C.; Andre, S.; Jimenez-Barbero, J.;
Rudiger, H. ChemBioChem 2004, 5, 740–764.
(6) Osborn, H. M. I.; Evans, P. G.; Gemmell, N.; Osborne, S. D.
J. Pharm. Pharmacol. 2004, 56, 691–702.
(16) Zhang, Z. Y.; Wong, C.-H. In Carbohydrates in Chemistry and
Biology; Ernst, B., Hart, G. W., Sinay, P., Eds.; Wiley-VCH: Weinheim,
Germany, 2000; Vol. 1, p 117-134.
(17) Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988,
110, 2662–2663.
(7) Dube, D. H.; Bertozzi, C. R. Nat. Rev. Drug Discovery 2005, 4, 477–488.
(8) Franco, A. Anti-Cancer Agents Med. Chem. 2008, 8, 86–91.
(9) Cipolia, L.; Peri, F.; Airoldi, C. Anti-Cancer Ag. Med. Chem. 2008, 8,
92–121.
(18) Garegg, P. J. Adv. Carbohyd. Chem. Biochem. 1997, 52, 179–205.
(19) Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015–9020.
(20) Demchenko, A. V.; Pomsuriyasak, P.; Meo, C. D.; Malysheva, N. N.
Angew. Chem., Int. Ed. 2004, 43, 3069–3072.
DOI: 10.1021/jo901857x
r
Published on Web 10/14/2009
J. Org. Chem. 2009, 74, 8417–8420 8417
2009 American Chemical Society