transformed into active ester 14 to facilitate the coupling to 15.
The reaction between 14 and 15 afforded the desired
MPLA–NPhAcGM3 conjugate, 16, in a good yield.
In summary, a highly convergent and efficient method has
been established for the synthesis of an MPLA derivative, 3,
derived from monosaccharides 4 and 5 in 6 separate steps and
a 17% overall yield. This MPLA derivative is suitable for
coupling to various structures. As a demonstration, 3 was
effectively coupled with a modified tumor-associated antigen
to afford 16, which was readily deprotected via Pd-catalyzed
hydrogenolysis. The immunological properties of conjugate 16
and its deprotected product as cancer vaccines are now under
investigation in our laboratory.
The authors thank NIH (CA95142) for their financial
support of this work. They also thank Dr B. Shay and
Dr L. Hryhorczuk for HRMS measurements, and Dr B. Ksebati
for NMR measurements.
Notes and references
1 C. Erridge, E. Bennett-Guerrero and I. R. Poxton, Microbes
Infect., 2002, 4, 837.
2 M. A. Dobrovolskaia and S. N. Vogel, Microbes Infect., 2002, 4,
903.
3 D. H. Persing, R. N. Coler, M. J. Lacy, D. A. Johnson,
J. R. Baldridge, R. M. Hershberg and S. G. Reed, Trends
Microbiol., 2002, 10(10), s32.
4 J. Baldridge, K. Myers, D. Johnson, D. Persing, C. Cluff and
R. Hershberg, in Vaccine Adjuvants, ed. C. J. Hackett and
D. A. J. Harn, Humana Press Inc., Totowa, NJ, 2006, pp. 235.
5 J. R. Baldridge and R. T. Crane, Methods, 1999, 19, 103.
6 E. S. Van Amersfoort, T. J. C. Van Berkel and J. Kuiper,
Clin. Microbiol. Rev., 2003, 16, 379.
Scheme 1 The synthesis of target molecule 3.
7 N. Qureshi, G. Kutuzova, K. Takayama, P. A. Rice and
D. T. Golenbock, J. Endotoxin Res., 1999, 5, 147.
8 D. C. Morrison, R. Silverstein, M. Luchi and A. Shnyra,
Infect. Dis. Clin. N. Am., 1999, 13, 313.
9 R. P. Darveau, Curr. Opin. Microbiol., 1998, 1, 36.
10 E. T. Rietschel, T. Kirikae, F. U. Schade, U. Mamat, G. Schmidt,
H. Loppnow, A. J. Ulmer, U. Zahringer, S. U. F. Di Padova,
M. Schreier and H. Brade, FASEB J., 1994, 8, 217.
11 E. Ribi, J. Cantrell, T. Feldner, K. Myers and J. Peterson,
Microbiology, 1986, 9.
12 C. R. Casella and T. C. Mitchell, Cell. Mol. Life Sci., 2008, 65,
3231.
13 S. J. Danishefsky and J. R. Allen, Angew. Chem., Int. Ed., 2000, 39, 836.
14 H. J. Jennings and R. K. Sood, in Neoglycoconjugates: Preparation
and Applications, ed. Y. C. Lee and R. T. Lee, Academic Press,
San Diego, 1994, pp. 325.
15 T. Buskas, S. Ingale and G.-J. Boons, Angew. Chem., Int. Ed.,
2005, 44, 5985.
16 V. A. Kulshin, U. Zahringer, B. Lindner, C. E. Frasch, C. M. Tsai,
¨
B. A. Dmitriev and E. T. Rietschel, J. Bacteriol., 1992, 174, 1793.
17 T. Mochizuki, Y. Iwano, M. Shiozaki, S. Kurakata, S. Kanaic and
M. Nishijima, Tetrahedron, 2000, 56, 7691.
18 H. Rembold and R. R. Schmidt, Carbohydr. Res., 1993, 246, 137.
19 A. V. Demchenko, M. A. Wolfert, B. Santhanam, J. N. Moore and
G.-J. Boons, J. Am. Chem. Soc., 2003, 125, 6103.
20 N. Yin, R. L. Marshall, S. Matheson and P. B. Savage, J. Am.
Chem. Soc., 2003, 125, 2426.
21 Z. Jiang, W. A. Budzynski, D. Qiu, D. Yalamati and
R. R. Koganty, Carbohydr. Res., 2007, 342, 784.
Scheme 2 The synthesis of MPLA–NPhAcGM3 conjugate 16.
N-phenylacetyl GM3 (NPhAcGM3), a neoantigen investi-
gated in our laboratory for cancer immunotherapy.24 As
outlined in Scheme 2, after the azido group of 3 was reduced
with Zn under acidic conditions, the resultant free amine was
acylated with succinic anhydride to form 13, which was then
22 Y. Zhang, J. Gaekwad, M. A. Wolfert and G.-J. Boons, J. Am.
Chem. Soc., 2007, 129, 5200.
23 Y. Fukase, Y. Fujimoto, Y. Adachi, Y. Suda, S. Kusumoto and
K. Fukase, Bull. Chem. Soc. Jpn., 2008, 81, 796.
24 Y. B. Pan, P. Chefalo, N. Nagy, C. V. Harding and Z. Guo,
J. Med. Chem., 2005, 48, 875.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5536–5537 | 5537