6542 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 21
Deng et al.
Acknowledgment. This work was supported by a start-up
fund to Y.S. from Baylor College of Medicine. We thank Dr.
Eric Oldfield for providing DXR, Dr. Adam Kuspa for
providing the bacteria, and Waleed Nasser for technical
assistance.
(f) Silber, K.; Heidler, P.; Kurz, T.; Klebe, G. AFMoC enhances
predictivity of 3D QSAR: a case study with DOXP-reductoisomerase.
J. Med. Chem. 2005, 48, 3547–3563. (g) Woo, Y. H.; Fernandes, R. P.;
Proteau, P. J. Evaluation of fosmidomycin analogs as inhibitors of the
Synechocystis sp. PCC6803 1-deoxy-D-xylulose 5-phosphate reductoi-
somerase. Bioorg. Med. Chem. 2006, 14, 2375–2385. (h) Kurz, T.;
Schl€uter, K.; Kaula, U.; Bergmann, B.; Walter, R. D.; Geffken, D.
Synthesis and antimalarial activity of chain substituted pivaloyloxy-
methyl ester analogues of fosmidomycin and FR900098. Bioorg. Med.
Chem. 2006, 14, 5121–5135. (i) Kurz, T.; Schl€uter, K.; Pein, M.;
Behrendt, C.; Bergmann, B.; Walter, R. D. Conformationally restrained
aromatic analogues of fosmidomycin and FR900098. Arch. Pharm.
Chem. Life Sci. 2007, 340, 339–344. (j) Haemers, T.; Wiesner, J.; Van
Poecke, S.; Goeman, J.; Henschker, D.; Beck, E.; Jomaa, H.; Van
Calenbergh, S. Synthesis of R-substituted fosmidomycin analogues as
highly potent Plasmodium falciparum growth inhibitors. Bioorg. Med.
Chem. Lett. 2006, 16, 1888–1891. (k) Devreux, V.; Wiesner, J.; Jomaa,
H.; Rozenski, J.; Van der Eycken, J.; Van Calenbergh, S. Divergent
strategy for the synthesis of R-aryl-substituted fosmidomycin analo-
gues. J. Org. Chem. 2007, 72, 3783–3789. For non-fosmidomycin-like
inhibitors, see the following: (l) Yajima, S.; Hara, K.; Sanders, J. M.;
Yin, F.; Ohsawa, K.; Wiesner, J.; Jomaa, H.; Oldfield, E. Crystal-
lographic structures of two bisphosphonate:1-deoxyxylulose-5-phos-
phate reductoisomerase complexes. J. Am. Chem. Soc. 2004, 126,
10824–10825. For high-throughput screening, see the following: (m)
Gottlin, E. B.; Benson, R. E.; Conary, S.; Antonio, B.; Duke, K.; Payne,
E. S.; Ashraf, S. S.; Christensen, D. J. High-throughput screen for
inhibitors of 1-deoxy-D-xylulose 5-phosphate reductoisomerase by
surrogate ligand competition. J. Biomol. Screening 2003, 8, 332–339.
(9) Yajima, S.; Hara, K.; Iino, D.; Sasaki, Y.; Kuzuyama, T.; Ohsawa,
K.; Seto, H. Structure of 1-deoxy-D-xylulose 5-phosphate reductoi-
somerase in a quaternary complex with a magnesium ion, NADPH
and the antimalarial drug fosmidomycin. Acta Crystallogr., Sect. F
2007, 63, 466–470.
(10) Mac Sweeney, A.; Lange, R.; Fernandes, R. P.; Schulz, H.; Dale, G.
E.; Douangamath, A.; Proteau, P. J.; Oefner, C. The crystal
structure of E. coli 1-deoxy-D-xylulose-5-phosphate reductoisome-
rase in a ternary complex with the antimalarial compound fosmi-
domycin and NADPH reveals a tight-binding closed enzyme
conformation. J. Mol. Biol. 2005, 345, 115–127.
(11) Athavale, V. T.; Prabhu, L. H.; Vartak, D. G. Solution stability
constants of some metal complexes of derivatives of catechol.
J. Inorg. Nucl. Chem. 1966, 28, 1237–1249.
(12) Agrawal, Y. K.; Roshania, R. D. Theomodynamic metal-ligand
stability constants of alkali eath metals with N-p-chlorophenylben-
zohydroxamic acid. Z. Phys. Chem. (Leipzig) 1982, 263, 822–826.
(14) For hydroxamate based matrix metalloproteinase inhibitors, see
the following: (a) Wada, C. K. The evolution of the matrix
metalloproteinase inhibitor drug discovery program at abbott
laboratories. Curr. Top. Med. Chem. 2004, 4, 1255–1267.For hydro-
xamate based histone deacetylase inhibitors, see the following:
(b) Sanderson, L.; Taylor, G. W.; Aboagye, E. O.; Alao, J. P.; Latigo,
J. R.; Coombes, R. C.; Vigushin, D. M. Plasma pharmacokinetics and
metabolism of the histone deacetylase inhibitor trichostatin A after
intraperitoneal administration to mice. Drug Metab. Dispos. 2004, 32,
1132–1138.
(15) (a) Jacobsen, F. E.; Lewis, J. A.; Cohen, S. M. The design of
inhibitors for medicinally relevant metalloproteins. ChemMed-
Chem 2007, 2, 152–171. (b) Jacobsen, F. E.; Lewis, J. A.; Cohen, S.
M. A new role for old ligands: discerning chelators for zinc metallo-
proteinases. J. Am. Chem. Soc. 2006, 128, 3156–3157.
Supporting Information Available: Figures S1 and S2 and
Experimental Section. This material is available free of charge
References
(1) Leeb, M. Antibiotics: a shot in the arm. Nature 2004, 431, 892–893.
(2) Nathan, C. Antibiotics at the crossroads. Nature 2004, 431, 899–
902.
(3) (a) Rodriguez-Concepcion, M. The MEP pathway: a new target for
the development of herbicides, antibiotics and antimalarial drugs.
Curr. Pharm. Des. 2004, 10, 2391–2400. (b) Testa, C. A.; Brown, M. J.
The methylerythritol phosphate pathway and its significance as a novel
drug target. Curr. Pharm. Biotechnol. 2003, 4, 248–259.
(4) Mine, Y.; Kamimura, T.; Nonoyama, S.; Nishida, M.; Goto, S.;
Kuwahara, S. In vitro and in vivo antibacterial activities of FR-
31564, a new phosphonic acid antibiotic. J. Antibiot. (Tokyo) 1980,
33, 36–43.
(5) Kuzuyama, T.; Shimizu, T.; Takahashi, S.; Seto, H. Fosmidomy-
cin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reduc-
toisomerase in the nonmevalonate pathway for terpenoid
biosynthesis. Tetrahedron Lett. 1998, 39, 7913–7916.
(6) (a) Jomaa, H.; Wiesner, J.; Sanderbrand, S.; Altincicek, B.;
Weidemeyer, C.; Hintz, M.; Turbachova, I.; Eberl, M.; Zeidler,
J.; Lichtenthaler, H. K.; Soldati, D.; Beck, E. Inhibitors of the
nonmevalonate pathway of isoprenoid biosynthesis as antimalarial
drugs. Science 1999, 285, 1573–1576. (b) Missinou, M. A.; Borrmann,
S.; Schindler, A.; Issifou, S.; Adegnika, A. A.; Matsiegui, P. B.; Binder,
R.; Lell, B.; Wiesner, J.; Baranek, T.; Jomaa, H.; Kremsner, P. G.
Fosmidomycin for malaria. Lancet 2002, 360, 1941–1942.
(7) (a) Dhiman, R. K.; Schaeffer, M. L.; Bailey, A. M.; Testa, C. A.;
Scherman, H.; Crick, D. C. 1-Deoxy-D-xylulose 5-phosphate re-
ductoisomerase (IspC) from Mycobacterium tuberculosis: towards
understanding mycobacterial resistance to fosmidomycin. J. Bac-
teriol. 2005, 187, 8395–8402. (b) Brown, A. C.; Parish, T. DXR is
essential in Mycobacterium tuberculosis and fosmidomycin resistance
is due to a lack of uptake. BMC Microbiol. 2008, 8, 78–86.
(8) For development based on fosmidomycin, see the following: (a)
Shtannikov, A. V.; Sergeeva, E. E.; Biketov, S. F.; Ostrovskii, D. N.
Evaluationof in vitro antibacterial activity of fosmidomycin and its
derivatives. Antibiot. Khimioter. 2007, 52, 3–9. (b) Kuntz, L.; Tritsch,
D.; Grosdemange-Billiard, C.; Hemmerlin, A.; Willem, A.; Bach, T. J.;
Rohmer, M. Isoprenoid biosynthesis as a target for antibacterial and
antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deox-
yxylulose phosphate reducto-isomerase. Biochem. J. 2005, 386, 127–
135. (c) Merckle, L.; de Andres-Gomez, A.; Dick, B.; Cox, R. J.;
Godfrey, C. R. A fragment-based approach to understanding inhibition
of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. ChemBioChem
2005, 6, 1866–1874. (d) Munos, J. W.; Pu, X.; Liu, H. W. Synthesis and
analysis of a fluorinated product analogue as an inhibitor for 1-deoxy-D-
xylulose 5-phosphate reductoisomerase. Bioorg. Med. Chem. Lett.
2008, 18, 3090–3094. (e) Ortmann, R.; Wiesner, J.; Silber, K.; Klebe,
G.; Jomaa, H.; Schlitzer, M. Novel deoxyxylulosephosphate-reductoi-
somerase inhibitors: fosmidomycin derivatives with spacious acyl
residues. Arch. Pharm. (Weinheim, Ger.) 2007, 340, 483–490.
(16) See Supporting Information for detailed synthesis and references.