7510 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 23
Thompson et al.
dissolved in anhydrous THF (50 mL). Then tert-butyldimethyl-
silyl chloride (3.60 g, 23.4 mmol) was added with vigorous
stirring. After 30 min, the reaction mixture was poured into
water (200 mL) and extracted into ether (3 ꢀ 50 mL). The
combined extracts were dried over MgSO4 and evaporated to
dryness giving the crude product as a viscous, colorless oil which
was used in the subsequent step without further purification. δH
(400 MHz, CDCl3) 7.02 (t, 1H, J=8.0), 6.35-6.27 (m, 2H), 6.23
(t, 1H, J=2.0), 3.17 (br s, 2H), 1.00 (s, 9H), 0.21 (s, 6H).
N-(3-Hydroxyphenyl)-2-(1H-indol-3-yl)-2-oxoacetamide 86.
Protected intermediate 36b (Scheme 2) was prepared from
indole and crude 3-(tert-butyldimethylsilyloxy)aniline 35b
(0.80 g, 3.6 mmol) according to the general procedure for
indole-3-glyoxylamides above. δH (400 MHz, CDCl3) 9.35 (s,
1H), 9.19 (d, 1H, J=3.0), 9.02 (br s, 1H), 8.51-8.47 (m, 1H),
7.50-7.46 (m, 1H), 7.43-7.34 (m, 3H), 7.31-7.24 (m, 2H), 6.71
(ddd, 1H, J=1.5, 2.5, 7.5), 1.03 (s, 9H), 0.26 (s, 6H); δC (62.8
MHz, CDCl3) 180.5, 159.9, 156.4, 138.4, 137.9, 135.7, 129.9,
126.7, 124.4, 123.6, 122.5, 116.8, 113.2, 112.9, 111.9, 111.7, 25.7,
18.2, -4.4; m/z (ES) 395 ([M þ H]þ); HRMS, found 395.1807
(C22H27N2O3Si requires 395.1791). Compound 36b (132 mg,
0.34 mmol) was then dissolved in THF (1.5 mL), and tetra-
butylammonium fluoride (1.0 M in THF, 0.37 mL, 0.37 mmol)
was added. A thick precipitate had appeared within a few
minutes. After 30 min, the product was isolated by filtration,
washed twice each with THF, DCM, and water, and dried
thoroughly. The title compound 86 was thereby obtained as its
tetrabutylammonium salt (140 mg, 80%).
cell adhesion by the prion protein. PLoS Biol. 2009, 7, No. e55, DOI:
10.1371/journal.pbio.1000055.
(10) (a) Singh, A.; Kong, Q.; Luo, X.; Petersen, R. B.; Meyerson, H.;
Singh, N. Prion protein (PrP) knock-out mice show altered iron
metabolism: a functional role for PrP in iron uptake and transport.
PLoS ONE 2009, 4, No. e6115, DOI: 10.1371/journal.pone.0006115.
(b) Singh, A.; Mohan, M. L.; Isaac, A. O.; Luo, X.; Petrak, J.; Vyoral,
D.; Singh, N. Prion protein modulates cellular iron uptake: a novel
function with implications for prion disease pathogenesis. PLoS ONE
2009, 4, No. e4468, DOI: 10.1371/journal.pone.0004468.
(11) (a) Mallucci, G.; Dickinson, A.; Linehan, J.; Klohn, P. C.; Brandner,
S.; Collinge, J. Depleting neuronal PrP in prion infection pre-
vents disease and reverses spongiosis. Science 2003, 302, 871–
874. (b) Mallucci, G. R.; White, M. D.; Farmer, M.; Dickinson, M.;
Khatun, H.; Powell, A. D.; Brandner, S.; Jefferys, J. G. R.; Collinge, J.
Targeting cellular prion protein reverses early cognitive deficits and
neurophysiological dysfunction in prion-infected mice. Neuron 2007,
53, 325–335.
(12) Vilette, D. Cell models of prion infection. Vet. Res. 2008, 39, 10,
DOI: 10.1051/vetres:2007049.
(13) Butler, D. A.; Scott, M. R. D.; Bockman, J. M.; Borchelt, D. R.;
Taraboulos, A.; Hsiao, K. K.; Kingsbury, D. T.; Prusiner, S. B.
Scrapie-infected murine neuroblastoma cells produce protease-
resistant prion proteins. J. Virol. 1988, 62, 1558–1564.
(14) (a) Clarke, M. C.; Haig, D. A. Evidence for the multiplication of
scrapie agent in cell culture. Nature 1970, 225, 100–101. (b) Haig, D.
A.; Clarke, M. C. Multiplication of the scrapie agent. Nature 1971, 234,
106–107. (c) Birkett, C. R.; Hennion, R. M.; Bembridge, D. A.; Clarke,
M. C.; Chree, A.; Bruce, M. E.; Bostock, C. J. Scrapie strains maintain
biological phenotypes on propagation in a cell line in culture. EMBO J.
2001, 20, 3351–3358. (d) Kanu, N.; Imokawa, Y.; Drechsel, D. N.;
Williamson, R. A.; Birkett, C. R.; Bostock, C. J.; Brockes, J. P. Transfer
of scrapie prion infectivity by cell contact in culture. Curr. Biol. 2002,
12, 523–530.
(15) (a) Furukawa, H.; Mitsuo, T.; Masashi, N.; Tatsuo, Y. Prospects of
the therapeutic approaches to Creutzfeldt-Jakob disease: a clinical
trial of antimalarial, quinacrine. Nippon Rinsho 2002, 60, 1649–
1657. (b) Nakajima, M.; Yamada, T.; Kusuhara, T.; Furukawa, H.;
Takahashi, M.; Yamauchi, A.; Kataoka, Y. Results of quinacrine
administration to patients with Creutzfeldt-Jakob disease. Dementia
Geriatr. Cognit. Disord. 2004, 17, 158–163. (c) Hak, S.; Brandel, J. P.;
Salomon, D.; Sazdovitch, V.; Delasnerie-Lauptre, N.; Laplanche, J. L.;
Acknowledgment. The authors thank the U.K. Depart-
ment of Health (Contract No. DH007/0102) and BBSRC
(Grant No. BB/E014119/1) for their generous funding.
Supporting Information Available: Spectroscopic data for all
library members (HRMS, IR, 1H NMR, 13C NMR); individual
compound purification details; compound purities by HPLC;
and dose-response curves for all cell line active compounds
(including the positive controls curcumin and quinacrine). This
material is available free of charge via the Internet at http://
pubs.acs.org.
ꢀ
Faucheux, B. A.; Soubrie, C.; Boher, E.; Belorgey, C.; Hauw, J. J.;
ꢀ
Alperovitch, A. Compassionate use of quinacrine in Creutzfeldt-Jakob
disease fails to show significant effects. Neurology 2004, 63, 2413–
2415.
(16) Collinge, J.; Gorham, M.; Hudson, F.; Kennedy, A.; Keogh, G.;
Pal, S.; Rossor, M.; Rudge, P.; Siddique, D.; Spyer, M.; Thomas,
D.; Walker, S.; Webb, T.; Wroe, S.; Darbyshire, J. Safety and
efficacy of quinacrine in human prion disease (PRION-1 study): a
patient preference trial. Lancet Neurol. 2009, 8, 334–344.
References
ꢀ
(17) Gayrard, V.; Picard-Hagen, N.; Viguie, C.; Laroute, V.;
Andreoletti, O.; Toutain, P.-L. A possible pharmacological expla-
(1) Creutzfeldt, H. G. Uber eine eigenartige erkrankung des zentral-
nervensystems. Vorla€ufige Mitteil. Z. Gesamte Neurol. Psychiatrie
1920, 1–18.
ꢀ
nation for quinacrine failure to treat prion diseases: pharmacoki-
netic investigations in an ovine model of scrapie. Br. J. Pharmacol.
2005, 144, 386–393.
(2) Will, R. G.; Ironside, J. W.; Zeidler, M.; Cousens, S. N.; Estibeiro,
K.; Alperovitch, A.; Poser, S.; Pocchiari, M.; Hofman, A.; Smith,
P. G. A new variant of Creutzfeldt-Jakob disease in the UK.
Lancet 1996, 347, 921–925.
(18) Otto, M.; Cepek, L.; Ratzka, P.; Doehlinger, S.; Boekhoff, I.;
Wiltfang, J.; Erle, E.; Pergande, G.; Ellers-Lenz, B.; Windl, O.;
Kretzschmar, H. A.; Poser, S.; Prange, H. Efficiacy of flupirtine on
cognitive function in patients with CJD. Neurology 2004, 62, 714–
718.
€
(3) Gerstmann, J.; Straussler, E.; Scheinker, I. Uber eine eigenartige
€
hereditary-familiare erkrankung des zentralnervensystems. Zugle-
ich ein beitrag zur frage des vorzeitigen lokalen alterns. Z. Gesamte
(19) (a) Dyer, O. Pentosan polysulphate prolongs survival in CJD,
study indicates. Br. Med. J. 2006, 333, 166. (b) Rainov, N. G.; Tsuboi,
Y.; Krolak-Salmon, P.; Vighetto, A.; Doh-Ura, K. Experimental treat-
ments for human transmissible spongiform encephalopathies: is there a
role for pentosan polysulfate? Expert Opin. Biol. Ther. 2007, 7, 713–
726.
(20) Forloni, G.; Salmona, M.; Marcon, G.; Tagliavini, F. Tetracyclines
and prion infectivity. Infect. Disord.: Drug Targets 2009, 9, 23–30.
(21) De Luigi, A.; Colombo, L.; Diomede, L.; Capobianco, R.; Mangieri,
M.; Miccolo, C.; Limido, L.; Forloni, G.; Tagliavini, F.; Salmona,
M. The efficacy of tetracyclines in peripheral and intracerebral
prion infection. PLoS One 2008, 3, No. e1888, DOI: 10.1371/
journal.pone.0001888.
(22) Stewart, L. A.; Rydzewska, L. H. M.; Keogh, G. F.; Knight, R. S.
G. Systematic review of therapeutic interventions in human prion
disease. Neurology 2008, 70, 1272–1281.
(23) (a) Cope, H.; Mutter, R.; Heal, W.; Pascoe, C.; Brown, P.; Pratt, S.;
Chen, B. Synthesis and SAR study of acridine, 2-methylquinoline
and 2-phenylquinazoline analogues as anti-prion agents. Eur. J.
Med. Chem. 2006, 41, 1124–1143. (b) May, B. C. H.; Witkop, J.;
Sherrill, J.; Anderson, M. O.; Madrid, P. B.; Zorn, J. A.; Prusiner, S. B.;
Neurol. Psychiatrie 1936, 154, 736–762.
(4) Lugaresi, E.; Medori, R.; Montagna, P.; Baruzzi, A.; Cortelli, P.;
Lugaresi, A.; Tinuper, P.; Zucconi, M.; Gambetti, P. Fatal familial
insomnia and dysautonomia with selective degeneration of thala-
mic nuclei. N. Engl. J. Med. 1986, 315, 997–1003.
(5) McGowan, J. P. Scrapie in sheep. Scott. J. Agric. 1922, 5, 365–
375.
(6) Wells, G. A.; Scott, A. C.; Johnson, C. T.; Gunning, R. F.;
Hancock, R. D.; Jeffrey, M.; Dawson, M.; Bradley, R. A novel
progressive spongiform encephalopathy in cattle. Vet. Rec. 1987,
121, 419–420.
(7) Williams, E. S.; Young, S. Chronic wasting disease of captive mule
deer: a spongiform encephalopathy. J. Wildl. Dis. 1980, 16, 89–98.
(8) Hu, W.; Kieseier, B.; Frohman, E.; Eagar, T. N.; Rosenberg, R. N.;
€
Hartung, H.-P.; Stuve, O. Prion proteins: physiological functions
and role in neurological disorders. J. Neurol. Sci. 2008, 264, 1–8.
(9) (a) Santuccione, A.; Sytnyk, V.; Leshchyns’ka, I.; Schachner, M.
Prion protein recruits its neuronal receptor NCAM to lipid rafts to
activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 2005,
ꢀ
169, 341–354. (b) Malaga-Trillo, E.; Solis, G. P.; Schrock, Y.; Geiss, C.;
Luncz, L.; Thomanetz, V.; Stuermer, C. A. O. Regulation of embryonic