128, 7179; L. Desai and M. S. Sanford, Angew. Chem., Int. Ed.,
2007, 46, 5737.
5 J. Streuff, C. H. Hovelmann, M. Nieger and K. Muniz, J. Am.
¨
¨
Chem. Soc., 2005, 127, 14586; K. Muniz, C. H. Hovelmann and
J. Streuff, J. Am. Chem. Soc., 2008, 130, 763; K. Muniz, J. Am.
Chem. Soc., 2007, 129, 14542.
6 K. Muniz, J. Streuff, C. H. Hovelmann and A. Nu´
nez, Angew.
¨
Chem., Int. Ed., 2007, 46, 7125.
7 K. Muniz, C. H. Hovelmann, E. Campos-Go
´
mez, J. Barluenga,
¨
J. M. Gonza
776; C. H. Hovelmann, J. Streuff, L. Brelot and K. Muniz, Chem.
´
lez, J. Streuff and M. Nieger, Chem.–Asian J., 2008, 3,
¨
Commun., 2008, 2334; K. Muniz, J. Streuff, P. Cha
C. H. Hovelmann, Chem.–Asian J., 2008, 3, 1248.
´
vez and
¨
8 A. Minatti and K. Muniz, Chem. Soc. Rev., 2007, 36, 1142.
9 V. Michelet, P. Y. Toullec and J.-P. Genet, Angew. Chem., Int. Ed.,
´
2008, 47, 4268; A. R. Chianese, S. J. Lee and M. R. Gagne, Angew.
Chem., Int. Ed., 2007, 46, 4042.
Fig. 2 Proposed catalytic cycle. X = Cl, Br.
10 Aminoplatination is the initial step in catalytic hydroamination.
For leading references see: J. L. McBee, A. T. Bell and T. D. Tilley,
J. Am. Chem. Soc., 2008, 130, 16562; C. F. Bender and
R. A. Widenhoefer, J. Am. Chem. Soc., 2005, 127, 1070;
D. Karshtedt, A. T. Bell and T. D. Tilley, J. Am. Chem. Soc.,
2005, 127, 12640; H. Qian and R. A. Widenhoefer, Org. Lett.,
2005, 7, 2635; D. A. Krogstad, J. Cho, A. J. DeBoer, J. A. Klietzke,
W. R. Sanow, W. R. Williams and J. A. Halfen, Inorg. Chim. Acta,
2006, 359, 136.
precedence in platinum-catalysed hydroamination chemistry.10
Even under employed neutral conditions, protonolysis of A
does not constitute a feasible pathway, as no hydroamination
product was ever detected. Instead, rapid oxidation of the
alkyl-platinum complex A to generate the corresponding
platinum(IV) complex B may occur in the presence of copper
bromide.17,19,20 This step characterises our present protocol as
an oxidatively intercepted hydroamination pathway. Alkyl
platinum(IV) catalyst state B undergoes intramolecular reductive
elimination to generate the C–O bond. This step is reminiscent
of related alkoxylation reactions at Pt(IV).17–19 Regeneration
of the copper(II) oxidant is then accomplished under aerobic
conditions in accordance with the established Wacker
conditions.20
11 For earlier reports on pyrrolidine-annelated isourea formation see
the first reference in ref. 7, and B. M. Cochran and F. E. Michael,
Org. Lett., 2008, 10, 5039.
12 Please see the ESIz for details.
13 Single crystals of 2h were recrystallised from methanol at room
temperature. CCDC 737012. For crystallographic data in CIF or
other electronic format, see DOI: 10.1039/b912139k.
14 D. Kalch, N. De Rycke, X. Moreau and C. Greck, Tetrahedron
Lett., 2009, 50, 492.
15 Value from R. C. West, Handbook of Chemistry and Physics,
The Chemical Rubber Co., Cleveland, 50th edn, 1969, p. D-110.
16 For some rare examples of platinum(IV) catalysis: A.
In summary, we have developed a new catalytic approach
in oxidative homogeneous platinum catalysis using aerobic
conditions. The reaction employs catalytic amounts of
copper(II) oxidant without any additives and represents a
significant advance in oxidative 1,2-difunctionalisation of
alkenes.
Dieguez-Vazquez, C. C. Tzschucke, Wing-Ye Lam and
´ ´
S. V. Ley, Angew. Chem., Int. Ed., 2008, 47, 209; J. Blum,
H. Beer-Krafts and Y. Badreh, J. Org. Chem., 1995, 60, 5567;
S. Kobayashi, K. Kakumoto and M. Sugiura, Org. Lett., 2002, 4,
1319.
17 For methanol elimination from neutral Pt(IV) complexes under
basic conditions: R. A. Periana, D. J. Taube, H. Gamble,
H. Taube, T. Satoh and H. Fujii, Science, 1998, 280, 560;
J. R. Khusnutdinova, L. L. Newman, P. Y. Zavalij, Y.-F. Lam
and A. N. Vedernikov, J. Am. Chem. Soc., 2008, 130, 2174;
E. Khaskin, P. Y. Zavalij and A. N. Vedernikov, J. Am. Chem.
Soc., 2008, 130, 10088; A. N. Vedernikov, S. A. Binfield,
P. Y. Zavalij and J. R. Khusnutdinova, J. Am. Chem. Soc., 2006,
128, 82; J. R. Khusnutdinova, P. Y. Zavalij and A. N. Vedernikov,
Organometallics, 2007, 26, 3466; J. R. Khusnutdinova,
P. Y. Zavalij and A. N. Vedernikov, Organometallics, 2007, 26,
2402.
This work was supported by the Fonds der Chemischen
Industrie, the International Centre for Frontier Research in
Chemistry and the Agence Nationale de Recherche.
Notes and references
1 K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2024;
H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem.
Rev., 1994, 94, 2483; A. B. Zaitsev and H. Adolfsson, Synthesis,
2006, 1725; C. Bolm, J. P. Hildebrand and K. Muniz, in Catalytic
Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH, Weinheim, 2000,
p. 299.
18 S. S. Stahl, J. A. Labinger and J. E. Bercaw, Angew. Chem., Int.
Ed., 1998, 37, 2180 and cited lit.
19 B. S. Williams, A. W. Holland and K. I. Goldberg, J. Am. Chem.
Soc., 1999, 121, 252; B. S. Williams and K. I. Goldberg, J. Am.
Chem. Soc., 2001, 123, 2576; K. I. Goldberg, J. Y. Yan and
E. L. Winter, J. Am. Chem. Soc., 1994, 116, 1573;
K. I. Goldberg, J. Y. Yan and E. M. Breitung, J. Am. Chem.
Soc., 1995, 117, 6889; A. Yahav-Levi, I. Goldberg and A. Vigalok,
J. Am. Chem. Soc., 2006, 128, 8710.
2 K. Muniz, Chem. Soc. Rev., 2004, 33, 166; K. Muniz, in Transition
Metals For Organic Chemistry Building Blocks and Fine Chemicals,
ed. M. Beller and C. Bolm, Wiley/VCH, Weinheim, 2nd edn, 2004,
vol. 2, p. 326.
3 Y. Li, D. Song and V. M. Dong, J. Am. Chem. Soc., 2008, 130,
2962; A. Wang, H. Jiang and H. Chen, J. Am. Chem. Soc., 2009,
131, 3846.
4 E. J. Alexanian, C. Lee and E. J. Sorensen, J. Am. Chem. Soc.,
2005, 127, 7690; G. Liu and S. S. Stahl, J. Am. Chem. Soc., 2006,
20 Palladium Catalyzed Oxidation of Hydrocarbons, ed. P. M. Henry,
Reidel, Dordrecht, 1980.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5591–5593 | 5593