ARTICLES
17. Meng, F.-K., Haeffner, F. & Hoveyda, A. H. Diastereo- and enantioselective
reactions of bis(pinacolato)diboron, 1,3-enynes, and aldehydes catalyzed by an
easily accessible bisphosphine–Cu complex. J. Am. Chem. Soc. 136,
11304−11307 (2014).
18. Meng, F.-K., Jang, H., Jung, B. & Hoveyda, A. H. Cu-catalyzed chemoselective
preparation of 2-(pinacolato)boron-substituted allylcopper complexes and their
in situ site-, diastereo-, and enantioselective additions to aldehydes and ketones.
Angew. Chem. Int. Ed. 52, 5046−5051 (2013).
19. Chaulagain, M. R., Sormunen, G. J. & Montgomery, J. New N-heterocyclic
carbene ligand and its application in asymmetric nickel-catalyzed aldehyde/
alkyne reductive couplings. J. Am. Chem. Soc. 129, 9568−9569 (2007).
20. Jackson, E. P. et al. Mechanistic basis for regioselection and regiodivergence
in nickel-catalyzed reductive couplings. Acc. Chem. Res. 48, 1736−1745 (2015).
21. Miller, K. M., Huang, W.-S. & Jamison, T. F. Catalytic asymmetric reductive
coupling of alkynes and aldehydes: enantioselective synthesis of allylic alcohols
and α-hydroxy ketones. J. Am. Chem. Soc. 125, 3442−3443 (2003).
22. Yang, Y., Perry, I. B., Lu, G., Liu, P. & Buchwald, S. L. Copper-catalyzed
asymmetric addition of olefin-derived nucleophiles to ketones. Science.
353, 144−150 (2016).
2 (1.0 equiv.)
[Ru(COD)Cl2]n (1.5 mol%)
L1 (1.5 mol%)
L2 (1.5 mol%)
NH2
.
Me
OH
Ph
N2H4 H2O
N
O
Ph
K3PO4 (25 mol%)
THF, 50 oC, 4 h
Ph
H
Ph
H
(R)-3a
52% yield
76:24 e.r.
1a
Ph
H2N
Ph
NH2
Ph
Ph
O
P
P
Me
Ph
Ph
Ph
(S,S)-Ph-BPE
(S,S)-DPEN
2
L1
L2
Figure 3 | Preliminary results on enantioselective carbonyl addition. Our
attempt to carry out an enantioselective carbonyl addition was successful by
combining a chiral diphosphine ligand (L1) and diamine ligand (L2) with
ruthenium complex [Ru(COD)Cl2]n, providing enantioenriched tertiary
alcohol 3a in moderate yield and e.r. This result indicates that the
stereoselectivity of new C−C formation (step of the nucleophilic carbonyl
addition) is influenced by chiral ligands. The e.r. value was determined by
chiral high-performance liquid chromatography. Absolute configuration was
assigned as (R) based on the literature report38. See Supplementary
Sections II and III for details. COD, 1,5-cyclooctadiene; (S,S)-Ph-BPE, (+)-1,2-
bis((2S,5S)-2,5-diphenylphospholano)ethane; DPEN,
23. Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice
(Oxford Univ. Press, 2000).
24. Li, C.-J. & Trost, B. M. Green chemistry for chemical synthesis. Proc. Natl Acad.
Sci. USA 105, 13197−13202 (2008).
25. Breslow, R. On the mechanism of thiamine action. IV.1 evidence from studies on
model systems. J. Am. Chem. Soc. 80, 3719−3726 (1958).
26. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18,
239−258 (1979).
27. Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of
imines. Nature 523, 445−450 (2015).
28. Brehme, R., Enders, D., Fernandez, R. & Lassaletta, J. M. Aldehyde N,N-
dialkylhydrazones as neutral acyl anion equivalents: umpolung of the imine
reactivity. Eur. J. Org. Chem. 2007, 5629−5660 (2007).
diphenylethylenediamine.
29. Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T.
Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115,
9307−9387 (2015).
Schlenk line procedure), and hygroscopic CsF should be properly stored in the
desiccator before use.
30. Bruneau, C. & Dixneuf, P. H. (eds) Ruthenium Catalysts and Fine Chemistry
(Springer, 2004).
31. Dai, X.-J. & Li, C.-J. En route to a practical primary alcohol deoxygenation.
J. Am. Chem. Soc. 138, 5433−5440 (2016).
32. Huang, J.-L., Dai, X.-J. & Li, C.-J. Iridium-catalyzed direct dehydroxylation of
alcohols. Eur. J. Org. Chem. 2013, 6496−6500 (2013).
33. Zimmerman, H. E. & Traxler, M. D. The stereochemistry of the Ivanov and
Reformatsky reactions. I. J. Am. Chem. Soc. 79, 1920−1923 (1957).
34. Wright, S. W., Hageman, D. L. & McClure, L. D. Fluoride-mediated boronic acid
coupling reactions. J. Org. Chem. 59, 6095−6097 (1994).
Hydrazone solution. A mixture of carbonyls (0.48 mmol, 1.2 equiv.) and hydrazine
monohydrate (26 µl, 0.52 mmol, 64–65 wt%, 1.3 equiv.) in THF (0.2 ml) solution
was stirred for 30 min at room temperature. Before injection of this hydrazone
solution A into the reaction mixture, a small amount of anhydrous Na2SO4 was
added to it.
All new compounds were fully characterized (Supplementary Sections III and VI).
Received 23 May 2016; accepted 18 October 2016;
published online 5 December 2016
35. Littke, A. F. & Fu, G. C. The first general method for Stille cross-couplings of aryl
chlorides. Angew. Chem. Int. Ed. 38, 2411−2413 (1999).
36. Burns, T. P. & Rieke, R. D. Highly reactive magnesium and its application to
organic syntheses. J. Org. Chem. 52, 3674−3680 (1987).
37. Krasovskiy, A. & Knochel, P. A LiCl-mediated Br/Mg exchange reaction for the
preparation of functionalized aryl- and heteroarylmagnesium compounds from
organic bromides. Angew. Chem. Int. Ed. 43, 3333−3336 (2004).
38. Kitanosono, T., Xu, P. & Kobayashi, S. Heterogeneous versus homogeneous
copper(II) catalysis in enantioselective conjugate-addition reactions of boron in
water. Chem. Asian. J. 9, 179−188 (2014).
References
1. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).
2. Noyori, R. & Kitamura, M. Enantioselective addition of organometallic reagents
to carbonyl compounds: chirality transfer, multiplication, and amplification.
Angew. Chem. Int. Ed. 30, 49−69 (1991).
3. Kobayashi, S. et al. in Comprehensive Organometallic Chemistry III (eds
Crabtree, R. H. & Mingos, D. M. P.) 403−491 (Elsevier, 2007).
4. Stowell, J. C. Carbanion Equivalents in Organic Synthesis (Wiley, 1979).
5. Kharasch, M. S. & Reinmuth, O. Grignard Reactions of Nonmetallic Substances
(Prentice-Hall, 1954).
6. Wakefield, B. J. Organomagnesium Methods in Organic Chemistry
(Academic, 1995).
Acknowledgements
The authors acknowledge the Canada Research Chair Foundation (to C.J.L.), the CFI,
FQRNT Center for Green Chemistry and Catalysis, NSERC and McGill University for
financial support. The authors thank P. Querard and Z. Huang for their donation of
compound 6a and chiral (S,S)-DPEN ligand, respectively. X.J.D. thanks the chemistry
department for a Heather Munroe-Blum fellowship.
7. Silverman, G. S. & Rakita, P. E. Handbook of Grignard Reagents (CRC, 1996).
8. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared
through halogen–metal exchange. Angew. Chem. Int. Ed. 42, 4302−4320 (2003).
9. Negishi, E.-i. Organometallics in Organic Synthesis (Wiley, 1980).
10. Pu, L. & Yu, H.-B. Catalytic asymmetric organozinc additions to carbonyl
compounds. Chem. Rev. 101, 757−824 (2001).
11. Ashby, E. C. & Laemmle, J. T. Stereochemistry of organometallic compound
addition to ketones. Chem. Rev. 75, 521−546 (1975).
12. Shibasaki, M. & Kanai, M. Asymmetric synthesis of tertiary alcohols and α-
tertiary amines via Cu-catalyzed C−C bond formation to ketones and ketimines.
Chem. Rev. 108, 2853−2873 (2008).
13. Duthaler, R. O. & Hafner, A. Chiral titanium complexes for enantioselective
addition of nucleophiles to carbonyl groups. Chem. Rev. 108, 807−832 (1992).
14. Alonso, F., Beletskaya, I. P. & Yus, M. Metal-mediated reductive
hydrodehalogenation of organic halides. Chem. Rev. 102, 4009−4092 (2002).
15. Jang, H.-Y. & Krische, M. J. Catalytic C−C bond formation via capture of
hydrogenation intermediates. Acc. Chem. Res. 37, 653−661 (2004).
16. Skucas, E., Ngai, M. Y., Komanduri, V. & Krische, M. J. Enantiomerically
enriched allylic alcohols and allylic amines via C−C bond-forming
Author contributions
H.W. and X.-J.D. are co-first authors responsible for this work, regardless of the listed
name order. H.W. discovered the reaction. X.-J.D. conceived the concept. X.-J.D.
and H.W. designed and performed the experiments, and analysed the data. X.-J.D.
and H.W. co-wrote the paper with feedback and guidance from C.-J.L. C.-J.L. directed
the project. All authors discussed the experimental results and commented on
the manuscript.
Additional information
Supplementary information and chemical compound information are available in the
hydrogenation: asymmetric carbonyl and imine vinylation. Acc. Chem. Res. 40, Competing financial interests
1394−1401 (2007).
The authors declare no competing financial interests.
5
© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.