Journal of the American Chemical Society
Article
(11) For discussions, see: Tatsumi, K.; Hoffmann, R.; Templeton, J.
L. Inorg. Chem. 1982, 21, 466 and references cited therein.
(12) See: Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134,
9541 and references cited therein.
(13) In the absence of dimethyl fumarate, 5a was isolated in 57%
yield after 48 h (vs 71% yield after 48 h under the conditions in Table
1). 5b was generated in 42% yield and 2:3 d.r. after 72 h when
dimethyl fumarate was omitted.
(14) In Murakami and Ito’s studies, both neutral and cationic systems
were effective at generating cyclopropanes from cyclobutanones (see
ref 7b). A major side reaction was competing β-hydride elimination
from the rhodacyclopentanone which resulted in alkene byproducts.
This competing pathway could be minimized by judicious choice of
ligand.
(15) For beneficial effects of Lewis basic additives or solvents in other
metal-catalyzed C−C activation processes, see: (a) Yasui, Y.; Kamisaki,
H.; Takemoto, Y. Org. Lett. 2008, 10, 3303. (b) Rondla, N. R.; Levi, S.
M.; Ryss, J. M.; Vanden Berg, R. A.; Douglas, C. J. Org. Lett. 2011, 13,
1940.
REFERENCES
■
(1) (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52,
6752. (b) Walters, W. P.; Green, J.; Weiss, J. R.; Murcko, M. A. J. Med.
Chem. 2011, 54, 6405. (c) Nadin, A.; Hattotuwagama, C.; Churcher, I.
Angew. Chem., Int. Ed. 2012, 51, 1114.
(2) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 259.
(3) (a) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W.
G.; Bower, J. F. J. Am. Chem. Soc. 2013, 135, 4992.
See also:
(b) Wilkinson, G.; Roundhill, D. N.; Lawson, D. N. J. Chem. Soc. A
1968, 845. (c) Narasaka, K.; Koga, Y. Chem. Lett. 1999, 28, 705.
Leading references to other classes of Rh-catalyzed carbonylative (3 +
1 + 2) cycloaddition that use cyclopropanes or related species:
(d) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12, 2528.
(e) Lu, B.-L.; Wei, Y.; Shi, M. Organometallics 2012, 31, 4601.
(f) Mazumder, S.; Shang, D.; Negru, D. E.; Baik, M.-H.; Evans, P. A. J.
Am. Chem. Soc. 2012, 134, 20569. (g) Li, C.; Zhang, H.; Feng, J.;
Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 3082.
(4) For phosphinite directed insertion of rhodium into cyclopropane
C−C bonds, see: Bart, S. C.; Chirik, P. J. J. Am. Chem. Soc. 2003, 125,
886.
(16) Complexes 9a/b are sparingly soluble in PhMe at room
temperature, and this necessitated removal of the reaction solvent
prior to NMR analysis in CD2Cl2.
(5) For a review that encompasses cycloadditions involving
aminocyclopropanes, see: de Nanteuil, F.; De Simone, F.; Frei, R.;
Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912.
(6) Selected reviews on C−C activation processes: (a) Crabtree, R.
H. Chem. Rev. 1985, 85, 245. (b) Jennings, P. W.; Johnson, L. L. Chem.
Rev. 1994, 94, 2241. (c) Murakami, M.; Ito, Y. In Activation of
Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin,
1999; p 97. (d) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed.
1999, 38, 870. (e) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (f) Seiser,
T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2011, 50,
7740. (g) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100.
(h) Aïssa, C. Synthesis 2011, 21, 3389. (i) Chen, F.; Wang, T.; Jiao, N.
Chem. Rev. 2014, 114, 8613.
(7) Rhodacyclopentanones (and related intermediates) can also be
generated by oxidative addition of Rh(I)-catalysts into the acyl-carbon
bond of cyclobutanones. For pioneering studies, see: (a) Murakami,
M.; Amii, H.; Ito, Y. Nature 1994, 370, 540. (b) Murakami, M.; Amii,
H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 8285.
(c) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. 2002, 124,
13976. (d) Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc.
2007, 129, 12596. For selected recent contributions in this area, see:
(e) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51,
2485. (f) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.; Ishida,
N.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 7142. (g) Parker, E.;
Cramer, N. Organometallics 2014, 33, 780. (h) Souillart, L.; Parker, E.;
Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3001. (i) Souillart, L.;
Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9640. (j) Ko, H. M.;
Dong, G. Nat. Chem. 2014, 6, 739. See also citations within reference
3a. In the approach outlined here, carbonylative generation of the
rhodacyclopentanone from a cyclopropane is a more appealing
strategy for reasons discussed in reference 3a.
(17) Another feasible method for obtaining stereocontrol involves
the alkene directing Rh-insertion to access selectively 7a or 7b.
Additional evidence disfavoring this selectivity mode includes: (a) less
strongly donating directing groups, such as trifluoroacetamide, are
completely ineffective under the conditions outlined in Table 3; (b)
the processes appear to be insensitive to the steric demands of the R2
substituent; and (c) for 5f, an alkene directed process would likely
favor Rh-insertion into the R1 group (5-ring chelate) rather than the
aminocyclopropane (6-ring chelate).
(18) When 12e (4.5:1 d.r.) was resubjected to the cyclization
conditions for 16 h, it was recovered in 75% yield and as a 3.5:1
mixture of diastereomers.
(19) Cramer, R. J. Am. Chem. Soc. 1967, 89, 4621.
(20) The neutral Rh(I)-system outlined in Table 1, which does not
appear to provide high reversibility for the processes described here,
also afforded selectively regioisomer 12e (43% yield, >15:1 r.r., 6:1
d.r.).
(21) Whether rhodacyclopentanone formation is under kinetic or
thermodynamic control in this case is unclear. For steric reasons,
insertion into bond a may be kinetically favored, but the resulting
rhodacyclopentanone is likely to be less stable than 14 due to steric
interactions between the butyl moiety and the directing group.
Consequently, reversible Rh/CO insertion may enable equilibration to
the thermodynamically favored regioisomer 14. Alternatively, 14 may
form directly for reasons outlined in the main text. At the present time,
evidence for reversible rhodacyclopentanone formation in cases
involving cis-disubstituted aminocyclopropanes has not been obtained
and products derived from Rh-insertion into the less hindered
proximal C−C bond (i.e., bond a of 11e and 13) have not been
observed.
(22) We note that related C−C bond activation/π-insertion
processes have been described as “cut and sew” methodologies.7j,8
In the present case, this terminology does not encompass the dynamic
nature of the C−C activation process.
(8) For processes that involve the generation of rhodaindanones by
oxidative addition of Rh(I)-catalysts into C(sp2)-acyl bonds, see:
(a) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2012, 51, 7567. (b) Xu, T.;
Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134,
20005. (c) Chen, P.-h.; Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014,
53, 1674. (d) Xu, T.; Savage, N. A.; Dong, G. Angew. Chem., Int. Ed.
2014, 53, 1891. (e) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53,
10733.
(9) Representative asymmetric approaches to cyclopropane carbox-
ylic acid derivatives: (a) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc.
1998, 120, 10270. (b) Lou, Y.; Remarchuk, T. P.; Corey, E. J. J. Am.
Chem. Soc. 2005, 127, 14223. (c) Gao, L.; Hwang, G.-S.; Ryu, D. H. J.
Am. Chem. Soc. 2011, 133, 20708. (d) Miyamura, S.; Araki, M.; Suzuki,
T.; Yamaguchi, J.; Itami, K. Angew. Chem., Int. Ed.; DOI: 10.1002/
anie.201409186.
(10) McQuillin, F. J.; Powell, K. C. Dalton Trans. 1972, 2129.
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX