C O M M U N I C A T I O N S
Scheme 3. Possible Mechanism for Aminofluorination of Alkenes
double bond exhibited high reactivity to form aminofluorination products
4i and 4j (entries 9-10). For the cyclic aminoalkenes, the reaction of trans-
3k afforded bicyclic product 4k at 87% yield with a 4:1 3,5-trans/cis
isomer ratio (entry 11). As a comparison, the opposite diastereoselectivity
(1:5 for 3,5-trans/cis) was achieved in the reaction of cis-3k with a similar
reaction yield (entry 12). Finally, the reaction of 3m, which has one more
carbon atom tethered between the amide and alkene, provided a mixture
of regioisomers 4m and 4m′ at a 5:1 ratio, in which the reaction favors
the 7-endo ring closures (entry 13). For the 1,2-disubstituted alkene N-tosyl
(Z)-4-hexenylamine, however, the reaction only afforded an aminopalla-
dation/ꢀ-hydride elimination product, rather than an aminofluorination
product (See Supporting Information Table S2).
Table 2. Palladium-Catalyzed Intramolecular Aminofluorination of
Alkenesa
(20821002, 20872155, and 20972175), the National Basic Research
Program of China (973-2009CB825300), and the Science and Technology
Commission of the Shanghai Municipality (08PJ1411600 and 08dj1400100).
G.L. thanks Prof. Jinbo Hu at SIOC for helpful discussions.
Supporting Information Available: Detail experimental procedures
and analytical data for all new compounds. This material is available free of
References
(1) (a) Welch, J. T., Eswarakrishman, S., Eds. Fluorine in Bioorganic
Chemistry; Wiley: New York, 1991. (b) Banks, R. E., Smart, B. E., Tatlow,
J. C., Eds. Organofluorine Chemistry: Principles and Commercial Ap-
plications; Plenum Press: New York, 1994.
(2) For reviews on fluorination of organic compounds, see: (a) Nyffeler, P. T.;
Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem.,
Int. Ed. 2005, 44, 192–212. (b) Shimizu, M.; Hiyama, T. Angew. Chem.,
Int. Ed. 2005, 44, 214–231. (c) Pihko, P. M. Angew. Chem., Int. Ed. 2006,
45, 544–547.
(3) (a) Somekh, L.; Shanzer, A. J. Am. Chem. Soc. 1982, 104, 5836–5837. (b)
Philips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett.
2000, 2, 1165–1168. (c) Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu,
L.; Hu, J. Org. Lett. 2006, 8, 1693–1696.
(4) For palladium-catalyzed fluorination of C-H bonds of arenes, see: (a) Hull,
K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134–
7135. (b) Wang, X.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,
7520–7521. For mechanistic studies, see: (c) Ball, N. D.; Sanford, M. S.
J. Am. Chem. Soc. 2009, 131, 3796–3797. (d) Furuya, T.; Ritter, T. J. Am.
Chem. Soc. 2008, 130, 10060–10061. For Pd-catalyzed coupling reaction
of aryl triflates with CsF, see: (e) Watson, D. A.; Su, M.; Teverovskiy, G.;
Zhang, Y.; Garc´ıa-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science. 2009,
325, 1661–1664.
(5) (a) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47,
5993–5996. For silver-mediated reaction, see: (b) Furuya, T.; Ritter, T.
Org. Lett. 2009, 11, 2860–2863. (c) Furuya, T.; Strom, A. E.; Ritter, T.
J. Am. Chem. Soc. 2009, 131, 1662–1663.
(6) For reviews on the oxidative amination of olefins, see: (a) Jensen, K. H.;
Sigman, M. S. Org. Biomol. Chem. 2008, 6, 4083–4088. (b) Kotov, V.;
Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910–1923. (c)
Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924–1935.
(7) (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127,
7690–7691. (b) Liu, G; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179–
7181. (c) Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46,
5737–5740. For dioxygenation, see: (d) Li, Y.; Song, D.; Dong, V. M.
J. Am. Chem. Soc. 2008, 130, 2962–2964.
(8) (a) Streuff, J.; Ho¨velmann, C. H.; Nieger, M.; Mun˜iz, K. J. Am. Chem.
Soc. 2005, 127, 14586–14587. (b) Mun˜iz, K. J. Am. Chem. Soc. 2007, 129,
14542–14543. (c) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147–
1149.
(9) (a) Michael, F. E.; Sibbald, P. A.; Cochran, B. M. Org. Lett. 2008, 10,
793–796. (b) Lei, A.; Lu, X.; Liu, G. Tetrahedron Lett. 2004, 45, 1785–
1788. (c) Manzoni, M. R.; Zabawa, T. P.; Kasi, D.; Chemler, S. R.
Organometallics 2004, 23, 5618–5621. For the chloroamination of alkenes
using N-chloro unsaturated amines, see: (d) Helaja, J.; Go¨ttlich, R. Chem.
Commun. 2002, 720–721.
(10) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem.
Soc. 2009, 131, 9488–9489.
(11) A number of fluoride salts, such as CaF2, CeF2, NaF, ZnF2, CuF2, KF,
NH4F, PbF2, BaF2, were subjected to reaction conditions, and none of them
are effective for aminofluorination.
(12) Although recent studies indicate that some cis-aminopalladation of alkenes
occurred in the 5-exo fashion, the 6-endo ring closure always proceeded
via trans-aminopalladation; see: Watson, M. P.; Overman, L. E.; Bergman,
R. G. J. Am. Chem. Soc. 2007, 129, 5031–5044.
a Reactions were conducted at 0.2 mmol scale. b Isolated yield (the ratio
of diastereoselectivity which determined by 19F NMR). c The ratio of
trans and cis isomers. d The ratio of 3,5-trans and 3,5-cis isomers. e The
ratio of 4m:4m′.
To gain some mechanistic insight into the aminofluorination process,
deuterium-labeled alkene E-3a-d1 was subjected to the standard reaction
condition, and a successful aminofluorination afforded the mixture of trans-
4a-d1 and cis-4a-d1 in 79% yield with a 72:28 ratio (Scheme 3). A possible
catalytic cycle based on our findings is shown below: Pd(II)-mediated
trans-aminopalladation of the alkene with attack at the terminal carbon
(6-endo)12 generates a Pd(II) intermediate that undergoes an oxidation
step by PhI(OPiv)2/AgF.4c,d Reductive elimination from the Pd(IV)
intermediate generates the C-F bond, where direct reductive elimination
is favored, but competing with SN2 type nucleophilic attack by fluorine.
In conclusion, a highly regioselective palladium-catalyzed intramo-
lecular oxidative aminofluorination of unactivated alkenes was reported,
in which AgF functioned as a fluorinating reagent in the presence of
PhI(OPiv)2. This transformation represents a very efficient method to
prepare fluoro-containing cyclic amine.
Acknowledgment. This work was supported by the Chinese
Academy of Science, the National Natural Science Foundation of China
JA9076588
9
J. AM. CHEM. SOC. VOL. 131, NO. 45, 2009 16355