estimated to be 4.1 ¥ 105 and 2.8 ¥ 105 M-1 (Fig. S7†). The
constants are comparable to those reported by Hamachi et al.,
which displays the confirmed synergic coordination of phosphates
to the unsaturated coordinated bisZn2+.14a
In conclusion, a novel visible light excited fluorescent TP/PPi
sensor was successfully constructed by appending the bis(BPEA-
Zn2+) motif to the ICT fluorophore ASBD. The 2Zn2+–
SBD-2BPEA system displays a selective PPi/TP-amplified flu-
orescence upon excitation at 468 nm. However, the analogous
2Zn2+–SBD-2BPA system based on the reported bis(BPA-Zn2+)
appending strategy fails to exhibit any fluorescent response. This
work provides a new promising approach for the development of
visible light excited sensors for phosphates by coupling two Zn2+
binding motifs with an ICT fluorophore. Moreover, the resulting
sensors can be fine tuned so that different phosphate anions can
be distinguished.
Fig.
3
The proposed sensing mechanism and binding mode of
2Zn2+–SBD-2BPEA system to triphosphate anion.
PET effect of 4-BPEA. The affinity of SBD-2BPEA to the second
Zn2+ could be largely enhanced by the synergic coordination
effect and the negative charges of TP. As a result, the PET effect
of 4-BPEA is effectively blocked and emission enhancement is
achieved.
We thank the financial support from the National Natural
Science Foundation of China (No. 20871066, 30370351, 90713001,
20721002, 20571043) and the Natural Science Foundation of
Jiangsu Province (BK2008015).
In order to verify the coordination mode of the ternary complex
of SBD-2BPEA, solid samples were prepared by adding TP
to the methanol solution of SBD-2BPEA and Zn(NO3)2. The
ESI-MS spectrum (negative mode, in DMSO–methanol) of the
sample exhibits an intensive signal at m/z 1047.4 (Fig. S5†).
The signal can be assigned to [2Zn2+ + SBD-2BPEA + P3O105-]-,
which confirms the binding ratio of 2 : 1 : 1 ([Zn2+]–[SBD-2BPEA]–
[P3O105-]) for the diZn2+ complex. The intramolecular synergic
coordination of TP to dual Zn2+ centers favours the stabilisation of
the diZn2+ complex even in the conditions for MS determination.
Further evidence for such a binding mode comes from the 31P
NMR spectral data. Two signals of free TP at -5.62 (distal P)
and -20.47 (middle P) ppm are shifted to -7.58 and -19.35 ppm,
respectively, when mixed with one equivalent SBD-2BPEA and
two equivalents Zn(NO3)2 (Fig. 4).
Notes and references
1 (a) W. N. Limpcombe and N. Stra¨ter, Chem. Rev., 1996, 96, 2375; (b) P.
Nyre´n, Anal. Biochem., 1987, 167, 235–238; (c) T. Tabary and L. Ju,
J. Immunol. Methods, 1992, 156, 55–60; (d) D. J. McCarty, Arthritis
Rheum., 1976, 19, 275–285; (e) A. Caswell, D. F. Guilland-Cumming,
P. R. Hearn, M. K. McGuire and R. G. Russell, Ann. Rheum. Dis.,
1983, 42(Suppl. 1), 27–37.
2 (a) A. V. Gourine, E. Llaudet, N. Dale and K. M. Spyer, Nature, 2005,
436, 108–111; (b) S. A. Johnson and T. Hunter, Nat. Methods, 2005, 2,
17–25.
3 R. Mart´ınez-Ma´n˜ez and F. Sanceno´n, Chem. Rev., 2003, 103, 4419–
4476.
4 S. E. Garc´ıa-Garrido, C. Caltagirone, M. E. Light and P. A. Gale,
Chem. Commun., 2007, 1450–1452.
5 F. Pina, M. A. Bernardo and E. Garc´ıa-Espan˜a, Eur. J. Inorg. Chem.,
2000, 2143–2157.
6 N. Marcotte and A. Taglietti, Supramol. Chem., 2003, 15, 617–625.
7 S. Sasaki, D. Citterio, S. Ozawa and K. Suzuki, J. Chem. Soc., Perkin
Trans. 2, 2001, 2309–2313.
8 H. K. Cho, D. H. Lee and J.-I. Hong, Chem. Commun., 2005, 1690–
1692.
9 Z. Chen, X. Wang, J. Chen, X. Yang, Y. Li and Z. Guo, New J. C hem.,
2007, 31, 357–362.
10 C. Lakshmi, R. G. Hanshaw and B. D. Smith, Tetrahedron, 2004, 60,
11307–11315.
11 (a) E. J. O’Neil and B. D. Smith, Coord. Chem. Rev., 2006, 250, 3068–
3080; (b) P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40,
486–516.
Fig. 4 31P NMR spectra of TP (upper) and TP in the presence of
one equivalent SBD-2BPEA and two equivalents Zn2+ in CD3OD–D2O
(lower).
12 D. H. Lee, S. Y. Kim and J.-I. Hong, Angew. Chem., Int. Ed., 2004, 43,
4777–4780.
13 D. J. Oh and K. H. Ahn, Org. Lett., 2008, 10, 3539–3542.
14 (a) A. Ojida, Y. Mito-oka, K. Sada and I. Hamachi, J. Am. Chem.
Soc., 2004, 126, 2454–2463; (b) A. Ojida, H. Nonaka, Y. Miyahara, S.
Tamaru, K. Sada and I. Hamachi, Angew. Chem., Int. Ed., 2006, 45,
5518–5521; (c) A. Ojida, I. Takashima, T. Kohira, H. Nonaka and I.
Hamachi, I, J. Am. Chem. Soc., 2008, 130, 12095–12101.
15 H. Jiang, E. J. O’Neil, K. M. DiVittorio and B. D. Smith, Org. Lett.,
2005, 7, 3013–3016.
16 S. Uchiyama, T. Santa, T. Fukushima, H. Homma and K. Imai,
J. Chem. Soc., Perkin Trans. 2, 1998, 2165–2173.
17 Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev., 2003, 103,
3899–4031.
Due to the flexibility of the BPEA motif, PPi is able to coordinate
to the two spaced (BPEA-Zn2+) motif in a similar synergic manner
2-
-
(Fig. S6†). However, HPO4 and H2PO4 fail to do so and
no emission change is observed, although their Zn2+ affinity is
comparable to that of TP and PPi. Their smaller size means that
one such anion cannot coordinate with the spaced bis(BPEA-
Zn2+) motif simultaneously. The minor emission enhancement
induced by the bulk C2O42- (EEF, ~1.5) also supports this proposal.
According to the fluorescence titration, the apparent binding
constants of diZn2+–SBD-2BPEA complex to TP and PPi were
18 F. Qian, C. Zhang, Y. Zhang, W. He, X. Gao, P. Hu and Z. Guo, J. Am.
Chem. Soc., 2009, 131, 1460–1468.
19 S. Banthia and A. Samanta, New J. Chem., 2005, 29, 1007–1010.
7890 | Dalton Trans., 2009, 7888–7890
This journal is
The Royal Society of Chemistry 2009
©