Most described systems of this type are designed to carry
out a single reaction that requires several operations or
perform several simple transformations on a single starting
material.2 Only a small handful of multistep systems have
been described which can assemble several building blocks
to more complex molecules.3,4 One outstanding example is
the synthesis of oxomaritidine from two simple starting
materials in six flow steps, where only one intermediate
product handling operation by the user was required in
connection with change of solvent.3a,5 Another recent
example describes the conversion of an acid chloride to an
isocyanate by a Curtius reaction, and subsequent reaction
with alcohols to produce carbamates in a single flow.3d This
system is relevant to our system, since implementation of a
Curtius step would allow acid chlorides rather than isocy-
anates as starting materials, and thereby expand the number
of easily accessible structures. A third notable flow system
performs two amide couplings, an asymmetric chlorination
and a nucleophilic substitution in a single continuous flow
carried out in a system of gravity columns.4a The scarcety
of reports of multistep continuous-flow syntheses is probably
related to the practical challenges that appear when such
systems are assembled, which include the frequent need for
different solvents in different reactions, accumulation of
byproduct and impurities which affect downstream reactions,
timing of reactant flows, build-up of high back-pressure over
several packed columns in series, precipitation and clogging
of tubes and columns, and chromatographic separation of
dissolved reagents in packed columns. Another reason may
be the high-tech flavor that the field has, with discussions
often focusing on lab chips and microstructured devices,
giving the impression that considerable investment is neces-
sary to enter the field.
Multistep continuous-flow systems appear to be particu-
larly suitable for medicinal chemistry, where a large number
of analogues in the optimization process can be synthesized
by the same reaction sequence consisting of a few relatively
simple steps, like amide couplings, reductive aminations,
catalytic hydrogenations, and metal-catalyzed coupling reac-
tions.6 Previous flow systems which assemble three building
blocks have been described, but these have only been
exemplified by the synthesis of a single compound, and the
building blocks are in all cases assembled by amide bond
formations.4 Here, we describe the construction of a continu-
ous-flow sequence designed for rapid synthesis of new
ligands in medicinal chemistry by combination of three
building blocks, and we demonstrate its potential by synthesis
of a library of diverse drug-like test compounds. Targeting
the chemokine receptor CCR8, which is of interest for
treatment of various inflammatory and allergic conditions,7
our goal was to construct a system for on-demand production
of compounds with pharmacophores corresponding to known
CCR8 ligands (Figure 1). Three reactions were selected to
Figure 1.
Inspirational chemokine receptor CCR8 ligands.8
accomplish this: the reaction of an amine with an isocyanate,
a Cbz-deprotection, and alkylation of a secondary amine.
A stock solution stream of a Cbz-protected diamine is
mixed with an isocyanate solution stream in a T-piece, and
(2) For example: (a) Lee, C. C.; Sui, G.; Elizarov, A.; Shu, C. J.; Shin,
Y. S.; Dooley, A. N.; Huang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb,
H. C.; Witte, O. N.; Satyamurthy, N.; Heath, J. R.; Phelps, M. E.; Quake,
S. R.; Tseng, H. R. Science 2005, 310, 1793–1796. (b) Baumann, M.;
Baxendale, I. R.; Ley, S. V. Synlett 2008, 2111–2114. (c) Gustafsson, T.;
Gilmour, R.; Seeberger, P. H. Chem. Commun. 2008, 3022–3024. (d) van
der Linden, J. J. M.; Hilberink, P. W.; Kronenburg, C. M. P.; Kemperman,
G. J. Org. Process Res. DeV. 2008, 12, 911–920. (e) Fukuyama, T.;
Kobayashi, M.; Rahman, M. T.; Kamata, N.; Ryu, I. Org. Lett. 2008, 10,
533–536. (f) Nagaki, A.; Kim, H.; Yoshida, J. Angew. Chem., Int. Ed. 2008,
47, 7833–7836. (g) Usutani, H.; Tomida, Y.; Nagaki, A.; Okamoto, H.;
Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2007, 129, 3046–3047.
(3) Multistep flow systems combining two building blocks: (a) Baxen-
dale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer,
G. K. Chem. Commun. 2006, 2566–2568. (b) Baxendale, I. R.; Griffiths-
Jones, C. M.; Ley, S. V.; Tranmer, G. K. Synlett 2006, 427–430. (c)
Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem.,
Int. Ed. 2009, 48, 4017–4021. (d) Sahoo, H. R.; Kralj, J. G.; Jensen, K. F.
Angew. Chem., Int. Ed. 2007, 46, 5704–5708. (e) Baumann, M.; Baxendale,
I. R.; Ley, S. V.; Nikbin, N.; Smith, C. D.; Tierney, J. P. Org. Biomol.
Chem. 2008, 6, 1577–1586. (f) Baumann, M.; Baxendale, I. R.; Ley, S. V.;
Nikbin, N.; Smith, C. D. Org. Biomol. Chem. 2008, 6, 1587–1593. (g) Grant,
D.; Dahl, R.; Cosford, N. D. J. Org. Chem. 2008, 73, 7219–7223. (h)
Baxendale, I. R.; Ley, S. V.; Smith, C. D.; Tamborini, L.; Voica, A. F.
J. Comb. Chem. 2008, 10, 851–857. (i) Gustafsson, T.; Ponten, F.; Seeberger,
P. H. Chem. Commun. 2008, 1100–1102. (j) Griffiths-Jones, C. M.; Hopkin,
M. D.; Jonsson, D.; Ley, S. V.; Tapolczay, D. J.; Vickerstaffe, E.; Ladlow,
M. J. Comb. Chem. 2007, 9, 422–430. (k) Hafez, A. M.; Taggi, A. E.;
(6) For examples of flow systems with medicinal chemistry applications,
see: (a) Hamper, B. C.; Tesfu, E. Synlett 2007, 2257–2261. (b) Bogdan,
A. R.; Sach, N. W. AdV. Synth. Catal. 2009, 351, 849–854.
(7) (a) Pease, J. E.; Horuk, R. Expert Opin. Ther. Pat. 2009, 19, 199–
221. (b) Mitsuyama, E.; Kunori, Y.; Kamimura, T.; Kaminuma, O. Mini-
ReV. Med. Chem. 2006, 6, 463–466.
(8) (a) Haskell, C. A.; Horuk, R.; Liang, M.; Rosser, M.; Dunning, L.;
Islam, I.; Kremer, L.; Gutierrez, J.; Marquez, G.; Martinez, A. C.; Biscone,
M. J.; Doms, R. W.; Ribeiro, S. Mol. Pharmacol. 2006, 69, 309–316. (b)
Jensen, P. C.; Nygaard, R.; Thiele, S.; Elder, A.; Zhu, G.; Kolbeck, R.;
Ghosh, S.; Schwartz, T. W.; Rosenkilde, M. M. Mol. Pharmacol. 2007,
72, 327–340. (c) Ghosh, S.; Patane, M. A.; Carson, K. G.; Chi, I. C. S.;
Ye, Q.; Elder, A. M.; Jenkins, T. J. Patent WO2003037271 , 2003.
(9) (a) Jones, R. V.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.;
Darvas, F. J. Comb. Chem. 2006, 8, 110–116. (b) Franckevicius, V.;
Knudsen, K. R.; Ladlow, M.; Longbottom, D. A.; Ley, S. V. Synlett 2006,
889–892.
(10) (a) Brinkman, J. A.; Cheung, A. W.-H.; Firooznia, F.; Guertin,
K. R.; Marcopulos, N.; Qi, L.; Racha, J. K.; Sarabu, R.; Tan, J.; Tilley,
J. W. Patent WO2007134958, 2007. (b) Chen, M.; Claret, E.; Cleve, A.;
Davey, D.; Guilford, W.; Khim, S.-K.; Kirkland, T.; Kochanny, M. J.; Liang,
A.; Light, D.; Parkinson, J.; Vogel, D.; Wei, G. P.; Ye, B.; Ye, H. US
patent US2007155727, 2007. (c) Jikyo, T.; Shudo, K. Patent WO2006028161
, 2006. (d) Campbell, M.; Mason, A. M.; Pinto, I. L.; Pollard, D. R.; Smith,
I. E. D. Patent WO2006085108, 2006. (e) Tassoni, E.; Giannessi, F.; Dell’
Uomo, N.; Gallo, G.; Conti, R.; Tinti, M. O. Patent WO2007096251, 2007.
(f) Ahn, K.; Johnson, D. S.; Fitzgerald, L. R.; Liimatta, M.; Arendse, A.;
Stevenson, T.; Lund, E. T.; Nugent, R. A.; Nomanbhoy, T. K.; Alexander,
J. P.; Cravatt, B. F. Biochemistry 2007, 46, 13019–13030.
Dudding, T.; Lectka, T. J. Am. Chem. Soc. 2001, 123, 10853–10859
.
(4) Multistep flow systems combining three building blocks: (a) France,
S.; Bernstein, D.; Weatherwax, A.; Lectka, T. Org. Lett. 2005, 7, 3009–
3012. (b) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E. Tetrahedron
2002, 58, 5427–5439. (c) Baxendale, I. R.; Ley, S. V.; Smith, C. D.;
Tranmer, G. K. Chem. Commun. 2006, 4835–4837
.
(5) Kundig, P. Science 2006, 314, 430–431
Org. Lett., Vol. 11, No. 22, 2009
.
5135