1.26 (3He, s, CH3), 4.28 (2Ha, dd, 2JHa–He 10.7, 3JHa–P 12.7, CH2O),
8 C. Patoi, L. Ricard and Ph. Savignac, J. Chem. Soc., Perkin Trans. 1,
1990, 1577–1581.
9 K. Lesiak, Z. J. Les´nikowski, W. J. Stec and B. Zielin´ska, J. Pol. Chem.,
2
3
4.38 (2He, dd, JHe–Ha 10.7, JHe–P 14.2, CH2O), 7.46 (2Harom, d,
3JH–H 8.3), 7.59 (1Hamide, d, 2JH–P 17.1); 7.78 (2Harom, d, 3JH–H 8.8);
dC(CDCl3) 22.01; 22.53; 32.89 (d, J 7.6), 79.05 (d, J 8.0), 129.49,
129.58, 130.65 (d, J 7.6), 140.03, 165.25 (d, J 8.0); nmax/cm-1 566
1979, 53, 2041–2050.
10 M. Michalska, I. Orlich-Kre˛zel and J. Michalski, Tetrahedron Lett.,
˙
1978, 34, 2821–2824.
11 C. Paulmier, Selenium Reagents and Intermediates in Organic Synthesis,
Pergamon Press, 1986, p. 6.
80
35
=
=
(P Se), 1653 (C O); m/z 366.9648 (C12H15NO3P Se Cl requires
366.9643).
12 C. K. Johnson, ORTEPII Report, ORNL-5138, Oak Ridge National
N-Pivaloyl-2-amino-2-seleno-5,5-dimethyl-1,3,2-dioxaphospho-
rinane 8b (1.75 g, 56%), mp 119–120.5 ◦C; dP (CDCl3) 58.4 (1JPSe
932); dH(CDCl3) 1.10 (3Ha, s, CH3), 1.22 (9H, s, CH3), 1.24 (3He, s,
CH3), 4.20–4.27 (4H, m), 6.93 (1Hamide, d, 2JH–P 18.1); dC(CDCl3)
22.16, 22.35, 27.34, 32.88 (d, J 7.6), 40.32 (d, J 6.1), 78.70 (d, J
Laboratory, Tennessee, USA, 1976.
13 G. Cholewinski, J. Chojnacki, J. Pikies and J. Rachon, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2009, 65, o855.
14 G. Cholewinski, J. Chojnacki, J. Pikies and J. Rachon, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2009, 65, o853–o854.
15 E. Juaristi and G. Cuevas, Tetrahedron, 1992, 48, 5019–5087.
16 J. Clade and M. Jansen, Z.Kristallogr.-New Cryst. Struct., 2005, 220,
234–236.
17 D. G. Gorenstein, Chem. Rev., 1987, 87, 1047–1077.
18 W. G. Bentrude, W. N. Setzer, E. Ramli, M. Khan and A. E. Sopchik,
J. Org. Chem., 1991, 56, 6127–6131.
19 D. B. Chesnut, J. Phys. Chem. A, 2000, 104, 7635–7638.
20 T. J. Bartczak, Z. Gałdecki, H. B. Trzez´win´ska and W. M. Wolf, Acta
Crystallogr., Sect. C: Cryst. Struct. Commun., 1983, 39, 731–732.
21 W. M. Wolf and T. J. Bartczak, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 1989, 45, 1767–1770.
22 T. J. Bartczak and W. Wolf, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 1983, 39, 224–227.
23 T. J. Bartczak, A. Christensen, R. Kinas and W. J. Stec, Cryst. Struct.
Commun., 1976, 5, 21–24.
24 T. J. Bartczak, A. Christensen, R. Kinas and W. J. Stec, Cryst. Struct.
Commun., 1975, 4, 701–704.
7.6); 177.91 (d, J 11.4); nmax/cm-1 536 (P Se), 562; 1688, 1716
(C O); m/z 313.0358 (C10H20NO3P Se requires 313.0346).
=
80
=
Attempted synthesis of N-substituted mixed imides 8c–8f.
To a suspension of sodium hydride (5–6 mmol) in 15 mL
of THF was added 2-phenylamino-2-seleno-5,5-dimethyl-1,3,2-
dioxaphosphorinane 11b (5 mmol) or 2-methylamino-2-seleno-
5,5-dimethyl-1,3,2-dioxaphosphorinane 11c (5 mmol) at 0 ◦C.
After all the hydrogen had evolved, the respective acyl chloride
12a,b (5 mmol) was added portionwise and stirring was continued
at room temperature for 1 h. 31P NMR analysis of the crude
reaction mixtures indicated numerous side-products. There was
no resonance signal for expected product 8c–8f or for the
isomerisation products 9c–9f.
25 R. Kinas, W. J. Stec and C. Kru˝ger, Phosphorus and Sulfur, 1978, 4,
295–298.
26 Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.
Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.
Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004.
27 T. J. Bartczak, Z. Gałdecki, W. M. Wolf, K. Lesiak and W. J. Stec, Acta
Crystallogr., Sect. C: Cryst. Struct. Commun., 1986, 42, 244–246.
28 CrysAlis CCD, CrysAlis RED and associated programs, Oxford Diffrac-
tion Ltd, Abingdon, England, 2006.
Thermodynamic stability of 8a and 8b. A solution of corre-
sponding imide 8a,b (1 mmol) in chloroform (5 mL) was prepared
and monitored by 31P NMR spectroscopy at room temperature.
Both imides were stable when the solutions were refluxed in
chloroform (b.p. 61 ◦C) for 4 h, and no reaction was detected.
Other solvents were also examined (benzene (b.p. 80 ◦C), toluene
(b.p. 111 ◦C)) with a 4 h monitoring time. During heating in
toluene, initial symptoms of decomposition were observed. No
isomerisation was noted in these experiments.
References
1 G. Mugesh, W.-W. du Mont and H. Sies, Chem. Rev., 2001, 101, 2125–
2179.
2 L. Doszczak and J. Rachon, J. Chem. Soc., Perkin Trans. 1, 2002, 1271–
1279.
3 L. Doszczak and J. Rachon, Synthesis, 2002, 1047–1052.
4 K. E. DeBruin and E. E. Boros, Tetrahedron Lett., 1989, 30, 1047–
1050.
5 K. E. DeBruin and E. E. Boros, Phosphorus, Sulfur Silicon Relat. Elem.,
1990, 49/50, 139–142.
29 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008,
64, 112–122.
30 NBO Version 3.1: E. D. Glendening, A. E. Read, J. E. Carpenter, F.
Weinhold;, A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78,
4066–4073; A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83,
1736.
6 K. E. DeBruin and E. E. Boros, J. Org. Chem., 1990, 55, 6091–6098.
7 J. Rachon, G. Cholewinski and D. Witt, Chem. Commun., 2005, 2692–
2694.
4100 | Org. Biomol. Chem., 2009, 7, 4095–4100
This journal is
The Royal Society of Chemistry 2009
©