M. R. Odrowaz-Sypniewski et al. / Tetrahedron Letters 50 (2009) 5981–5983
5983
Med. Chem. 2005, 12, 2481. and references cited therein; (d) Gales, L.; Damas, A. M.
Curr. Med. Chem. 2005, 12, 2499. and references cited therein; (e) Pinto, M. M. M.;
Sousa, M. E.; Nascimento, M. S. J. Curr. Med. Chem. 2005, 12, 2517. and references
cited therein; (f) Riscoe, M.; Kelly, J. X.; Winter, R. Curr. Med. Chem. 2005, 12, 2539.
and references cited therein; (g) Peras, V.; Nagem, T. J. Phytochemistry 1997, 44,
191. and references cited therein; (h) Peras, V.; Nagem, T. J.; De Oliveira, F. F.
Phytochemistry 2000, 55, 683. andreferences cited therein;(i) Potterat, O. Curr. Org.
Chem. 1997, 1, 415. and references cited therein.
O
O
Me
MeO OMe
i, ii, iii
+
+
7
O
O
O
Me
61%
8
9
5
2. (a) Bennett, G. J.; Lee, H. Phytochemistry 1989, 28, 967; (b) Afzal, M.; Al-Hassan, J.
M. Heterocycles 1980, 14, 1173; (c) Sutanbawa, M. U. S. Tetrahedron 1980, 36,
1465; (d) Rewcastle, G. W.; Atwell, G. J.; Baguley, B. C.; Boyad, M.; Thomsen, L. L.;
Zhuang, L.; Denny, W. A. J. Med. Chem. 1991, 34, 2864. and references cited
therein; (e) Jackson, W. T.; Boyd, R. J.; Froelich, L. L.; Gapinski, D. D.; Mallet, B. E.;
Sawyer, J. S. J. Med. Chem. 1993, 36, 726; (f) Sun, L.; Liebeskind, L. S. Tetrahedron
Lett. 1997, 38, 3663; (g) Hostettmann, K.; Hostettmann, M.. In Methods in Plant
Biochemistry; Harborne, J. B., Ed.; Academic Press: London, 1989; Vol. l, p 493; (h)
Sordat-Diserens, I.; Marston, A.; Hamburger, M.; Rogers, C.; Hostettmann, K. Helv.
Chim. Acta 1989, 72, 1001; (i) Sordat-Diserens, I.; Humburger, M.; Rogers, C.;
Hostettmann, K. Phytochemistry 1992, 31, 3589; (j) Ferrari, F.; Pasqua, G.;
Moracelli, B.; Cimino, P.; Botta, B. Nat. Prod. Res. 2005, 19, 171.
Scheme 2. Lithiation according to procedure B.11Reagents and conditions: (i) t-BuLi
(1.5 equiv)/THP, ꢀ13 °C, 30 min; (ii) CH3I and (iii) H+/H2O.
O
MeO OMe
i, ii, iii
O
O
3. Casillas, L. K.; Townsend, C. A. J. Org. Chem. 1999, 64, 4050. and references cited
therein.
Me
Me
85%
4. (a) Chandrasekhar, B.; Ramadar, S. R.; Ramana, D. V. Tetrahedron 2000, 56,
5947; (b) Sun, L.; Liebenskind, L. S. J. Am. Chem. Soc. 1996, 118, 12473; (c)
Familoni, O. B.; Ionica, I.; Bower, J. F.; Snieckus, V. Synlett 1997, 1081; (d)
Kristensen, J. L.; Vedso, P.; Begtrup, M. J. Org. Chem. 2003, 68, 4091; (e) Thasana,
N.; Ruchirawat, S. Synlett 2003, 1037; (f) Hauser, F. M.; Dorch, W . A. Org. Lett.
2003, 5, 3753; (g) Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551; (h) Zhao, J.;
Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288; (i) Dang,
A.-T.; Miller, D. O.; Dawe, L. N.; Bodwell, G. J. Org. Lett. 2008, 10, 233.
5. (a) Ghosh, C. K.; Sahana, S.; Patra, A. Tetrahedron 1993, 49, 4127; (b) Lecheter, R.
M.; Yue, T.-Y.; Cheung, K.-K. J. Chem. Soc., Chem. Commun. 1993, 159; (c) Gabutt,
C. D.; Hepworth, J. D.; Urquhart, M. W. J.; Vazquez de Miguel, L. M. J. Chem. Soc.,
10
5
Scheme 3. Lithiation according to procedure C.11Reagents and conditions: (i) t-BuLi
(3 equiv), t-BuOK (3 equiv)/THP, ꢀ13 °C, 30 min; (ii) CH3I and (iii) H+/H2O.
ently emanating from the ketal oxygen lone electron pairs may ac-
count for C-1 (C-8) substitution. Deuteration, however (Table 1, en-
try 11) suggests that the reaction may have well proceeded via a
4,5-dilithio species. During the lithiation there is competition
among the lithiated species, the base and the electrophile. Whether
a prelithiation complex17 is involved, whose stability is compared
against that of the transition state structure, in concert with the
electrophile, or there is a stabilizing lithium-substituent interac-
tion18 at the rate-limiting transition structure, is in question.
In conclusion, the reactivity profile of 1 has been investigated
via directed lithiation of its ketal 5. The protocol developed allows
mono or disubstitution, directly and with synthetically useful reg-
ioselectivity, the latter being dependent upon the nature of the
electrophile. Disubstitution offers the advantage of incorporating
identical functionalities in one-step. The synthetic utility of the
protocol rests upon two elements of tactical significance: (a) the
use of xanthone, masked as its dimethyl ketal, rapidly regenerating
the core structure upon work-up, and (b) manipulation of the reac-
tion conditions leading to regioselectivity. The substitution pat-
terns so obtained provide access to various transformations such
as annelation onto or cleavage of the xanthone structure, ulti-
mately leading to diverse heterocycles.19 In this respect, the proto-
col is a valuable addition to the existing armory of indirect
approaches to xanthone derivatives. Further work along this line
is in progress and will be reported in due course.
Perkin Trans.
1 1998, 1547; (d) Kristensen, J. L.; Vedso, P.; Begtrup, M.
Tetrahedron 2002, 58, 2397; (e) Tisdale, E. J.; Kochman, D. A.; Theodorakis, E.
Tetrahedron Lett. 2003, 44, 281; (f) Kolokythas, G.; Pouli, N.; Marakos, H.;
Pratsinis, H.; Kletsas, D. Eur. J. Med. Chem. 2006, 41, 71; (g) Henry, K. M.;
Townsend, C. A. J. Am. Chem. Soc. 2005, 127, 3300; (h) Henry, K. M.; Townsend,
C. A. J. Am. Chem. Soc. 2005, 127, 3724.
6. Based on a report (Abrams, S. R. J. Labelled Compds. Radiopharm. 1978, 24, 941) 1
can be deuterated at C-1 and C-4 by the K, but not the Li salt, of N,N,N0,N0-d4-
1,3-diaminopropane. C-4 proved to be the most readily deprotonated site.
7. (a) Nowick, J. S.; Ballester, P.; Ebmeyer, F.; Rebek, J., Jr. J. Am. Chem. Soc. 1990,
112, 8902; (b) McWilliams, K.; Kelly, J. W. J. Org. Chem. 1996, 61, 7408; (c) Galt,
R. H. B.; Horbury, J.; Matusiak, Z. S.; Pearce, R. J.; Shaw, J. S. J. J. Med Chem. 1989,
32, 2357; (d) Gilman, H.; Diehl, J. J. Org. Chem. 1961, 26, 4817; (e) Coelho, P. J.;
Carvalho, L. M.; Silva, J. C.; Oliveira-Campos, A. M. F.; Samat, A.; Guglielmetti, R.
Helv. Chim. Acta 2001, 84, 117; (f) Clayden, J.; Kenworthy, M. N.; Youssef, L. H.;
Helliwell, M. Tetrahedron Lett. 2000, 41, 5171.
8. (a) Halton, B.; Cooney, M. J.; Boese, R.; Maulitz, A. H. J. Org. Chem. 1998, 63,
1583; (b) Martin, J. C.; Smith, R. G. J. Am. Chem. Soc. 1964, 86, 2252.
9. (a) Reese, C. B.; Song, Q.; Yan, H. Tetrahedron Lett. 2001, 42, 1789; (b) Reese, C.
B.; Yan, H. J. Chem. Soc., Perkin Trans. 1 2001, 1807.
10. Ho, D. K.; McKenzie, A. T.; Byrn, S. R.; Cassady, J. M. J. Org. Chem. 1987, 52, 342.
11. General lithiation procedure according to methods
A
and B: 9,9-
Dimethoxyxanthene (5) (500 mg, 2 mmol) was dissolved in dry
tetrahydropyran (2 mL) (method A); (4 mL) (method B). After cooling to
ꢀ10 °C (method A); ꢀ40 °C (method B), t-BuLi solution (7.0 mL, of 1.7 mol/L,
12 mmol) (method A); (1.76 mL, of 1.7 mol/L, 3 mmol) (method B) in hexanes
was added over a period of 2 min, while the temperature was maintained
between ꢀ10 and 0 °C (method A); ꢀ40 and ꢀ30 °C (method B). Stirring was
continued at 0 to 10 °C over 45 min (method A); at ꢀ40 to ꢀ30 °C over 30 min
(method B). Next, the reaction mixture was quenched with the appropriate
electrophile while the temperature was maintained as given above, then
poured into water (50 mL), acidified to pH 3 with aqueous HCl and extracted
with ethyl acetate (3 ꢁ 15 mL). The products were isolated by flash column
chromatography on silica.General lithiation procedure according to method C:
9,9-Dimethoxyxanthene (5) (500 mg, 2 mmol) and t-BuOK (6 mmol) were
dissolved in dry tetrahydropyran (6 mL). After cooling to ꢀ40 °C, t-BuLi
solution (3.5 mL, of 1.7 mol/L, 6 mmol) in hexanes was added over a period
of 2 min, and the temperature was maintained between ꢀ40 and ꢀ30 °C. The
rest of the procedure was identical with procedure B.
Acknowledgements
Financial support from the General Secretariat of Research and
Technology through the Programme ENTER and elemental analyses
from Dr. L. Leontiadis’s Laboratory, ‘Demokritos’ Research Centre
are gratefully acknowledged.
12. Blake, J. A.; Gagnon, E.; Lukeman, M.; Scaiano, J. Org. Lett. 2006, 8, 1057.
13. Pickert, M.; Frahm, A. W. Archiv. Pharm. 1998, 331, 177.
14. Valenti, P.; Chiarini, A.; Gasperi, F.; Budriesi, R. Arzneim. Forsch. 1990, 40, 122.
15. Schnurch, M.; Spina, M.; Khan, A. F.; Mihovilovic, M. D.; Stanetty, P. Chem. Soc.
Rev. 2007, 36, 1046.
16. (a) Gohier, F.; Castanet, A.-S.; Mortier, J. J. Org. Chem. 2005, 70, 1501; (b)
Palmer, B. D.; Boyd, M.; Denny, W. A. J. Org. Chem. 1990, 55, 438; (c) Mortier, J.;
Nguyen, T.-H.; Tilly, D.; Castanet, A.-S. ARKIVOC 2007, 6, 47.
Supplementary data
Supplementary data (experimental procedures and full charac-
terization of all new compounds) associated with this article can be
17. Whisler, M. N.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int. Ed. 2004,
43, 2206.
18. Van Eikema, N. J. R.; Schleyer, P. V. R. Tetrahedron 1994, 50, 5903.
19. These features may also prove useful in studies of remote stereocontrol relayed
through the ring, see: Clayden, J.; Lund, A.; Vallverdú, L.; Helliwell, M. Nature
2004, 431, 966.
References and notes
1. For recent reviews, see: (a) Vieira, L. M. M.; Kijjoa, A. Curr. Med. Chem. 2005, 12,
2413.andreferencescitedtherein;(b)Sousa,M.E.;Pinto, M.M.M.Curr. Med.Chem.
2005, 12, 2447. and references cited therein; (c) Silva, A. M. S.;Pinto, D. C. G. A. Curr.