ORGANIC
LETTERS
2009
Vol. 11, No. 24
5734-5737
Cooperativity of Regiochemistry Control
Strategies in Reductive Couplings of
Propargyl Alcohols and Aldehydes
Hasnain A. Malik, Mani Raj Chaulagain, and John Montgomery*
Department of Chemistry, UniVersity of Michigan, Ann Arbor, Michigan 48109-1055
Received November 4, 2009
ABSTRACT
The nickel-catalyzed reductive coupling of propargyl alcohols and alkynes proceeds with excellent regiochemical control with an underlying
electronic preference that can be supplemented by ligand size effects. The products obtained may be readily converted to substructures that
are not directly available by an aldehyde-alkyne reductive coupling. A simple model for how steric and electronic factors are both important
in governing regiochemistry in couplings of this type is presented, along with examples of how the effects can combine in either a constructive
or destructive manner.
The reductive coupling of aldehydes and alkynes provides
a powerful strategy for the preparation of stereodefined
allylic alcohols.1 Numerous strategies either involving
stoichiometrically generated, alkyne-derived vinyl orga-
nometallic reagents2 or the catalytic assembly of an allylic
alcohol directly from the alkyne3 have been described. A
common issue that plagues intermolecular strategies of
this type is the control of regiochemistry in the alkyne
insertion. Indeed, controlling regioselectivity is arguably
the most challenging task in developing 1,2-difunction-
alization reactions of alkynes. The vast majority of
regioselective additions to alkynes involve alkynes with
a major bias in either the size or the electronic charac-
teristics of the acetylenic substituents.4 Internal alkynes
with only subtle biases between the two acetylenic termini
are notoriously difficult substrates for the development
of regioselective processes.
(1) (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467–473. (b)
Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890–3908. (c)
Montgomery, J.; Sormunen, G. J. In Metal Catalyzed ReductiVe C-C Bond
Formation: A Departure from Preformed Organometallic Reagents; Springer:
Dordrecht, 2007; Vol. 279, pp 1-23. (d) Moslin, R. M.; Miller-Moslin,
K.; Jamison, T. F. Chem. Commun. 2007, 4441–4449. (e) Ikeda, S. Angew.
Chem., Int. Ed. 2003, 42, 5120–5122. (f) Skukcas, E.; Ngai, M.-Y.;
Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394–1401. (g)
Patman, R. L.; Chaulagain, M. R.; Williams, V. M.; Krische, M. J. J. Am.
Chem. Soc. 2009, 131, 2066–2067.
(2) (a) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115,
1593–1594. (b) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197–5200.
(c) Kerrigan, M. H.; Jeon, S.-J.; Chen, Y. K.; Salvi, L.; Carroll, P. J.; Walsh,
P. J. J. Am. Chem. Soc. 2009, 131, 8434–8445.
In the nickel-catalyzed reductive coupling of aldehydes
with electronically biased alkynes, regioselectivities are often
(3) (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065–
9066. (b) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 6098–
6099. (c) Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc.
2004, 126, 3698–3699. (d) Knapp-Reed, B.; Mahandru, G. M.; Montgomery,
J. J. Am. Chem. Soc. 2005, 127, 13156. (e) Sa-ei, K.; Montgomery, J. Org.
Lett. 2006, 8, 4441–4443. (f) Baxter, R. D.; Montgomery, J. J. Am. Chem.
Soc. 2008, 130, 9662–9663. (g) Huang, W. S.; Chan, J.; Jamison, T. F.
Org. Lett. 2000, 2, 4221–4223. (h) Miller, K. M.; Luanphaisarnnont, T.;
Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 4130–4131. (i)
Miller, K. M.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 15342–15343.
(j) Moslin, R. M.; Jamison, T. F. Org. Lett. 2006, 8, 455–458. (k) Moslin,
R. M.; Miller, K. M.; Jamison, T. F. Tetrahedron 2006, 62, 7598–7610. (l)
Saito, N.; Katayama, T.; Sato, Y. Org. Lett. 2008, 10, 3829–3822.
(4) For examples of regioselective alkyne addition reactions, see: (a)
Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119,
11313–11314. (b) Gevorgyan, V.; Takeda, A.; Homma, M.; Sadayori, N.;
Radhakrishnan, U.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 6391–
6402. (c) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775–
10782. (d) Tanaka, R.; Yuza, A.; Watai, Y.; Suzuki, D.; Takayama, Y.;
Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7774–7780. (e) Murakami,
M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932–6933. (f)
Evans, P. A.; Inglesby, P. A. J. Am. Chem. Soc. 2008, 130, 12838–12839.
(g) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc.
2009, 131, 5070–5071. (h) Ohnishi, Y.; Nakao, Y.; Sato, H.; Nakao, Y.;
Hiyama, T.; Sakaki, S. Organometallics 2009, 28, 2583–2594.
10.1021/ol902561r 2009 American Chemical Society
Published on Web 11/17/2009