M. L. N. Rao et al. / Tetrahedron Letters 50 (2009) 6133–6138
6137
this study, the coupling reaction was demonstrated to be facile
using catalytic Pd with Et3N (1 equiv) in THF to furnish the high
yield of product at 80 °C in short reaction time (Table 1, entry 15).
Hence, it was decided to study the scope of cross-coupling of
stoichiometric multi-coupling reagents. This study demonstrated
the efficient synthesis of various regio-isomeric mono-, di- and
tri-substituted
coupling reaction has been found to be facile for the synthesis of
a variety of -aryl mixed ketones with both electronically diver-
gent -arylacetyl chlorides as electrophiles and triarylbismuths
as nucleophiles. The coupling ability of triarylbismuths with
3 equiv of -arylacetyl chloride is an added advantage associated
a-arylketones under the Pd-catalytic protocol. The
a-arylacetyl chlorides with triarylbismuths to generalize the reac-
a
tion. Firstly, the reactivity of -phenylacetyl chloride with a variety
a
a
of triarylbismuths was checked using the optimized protocol
(Table 2).13,14
a
As illustrated, both electron-deficient and electron-rich triarylbis-
with this class of compounds in comparison with some of the
known organometallic nucleophiles used for such coupling
reactions.
muths have fared well in furnishing the corresponding
tophenones in good to high yields (Table 2, entries 1–9). The
overall reactivity of -phenylacetyl chloride with electronically
divergent triarylbismuths was facile under the present protocol.
Further, various functionalized -arylacetyl chlorides were studied
a-arylace-
a
Acknowledgments
a
with different triarylbismuth nucleophiles (Table 2, entries 10–35).
These reactions furnished moderate to high yields of correspond-
We thank the Department of Science and Technology (DST),
New Delhi, for funding this work under green chemistry program
(SR/S5/GC-11/2008). S.G. and D.N.J. thank the Council of Scientific
and Industrial Research (CSIR), New Delhi, for their research
fellowships.
ing
tyl chlorides with ortho, meta, and para substitutions reacted
efficiently giving high yields of regio-isomeric -arylacetophenon-
a-arylacetophenones. The mono- and di-substituted a-arylace-
a
es. The reactions carried out with trithiophen-2-ylbismuth also
afforded high yields of corresponding coupling products (Table 2,
entries 22 and 28). At large, the coupling ability of various triaryl-
bismuths was found to be efficient with electronically divergent
References and notes
1. Selected examples: (a) Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288–325;
(b) Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486–1499; (c)
Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–286; (d) Rao, M. L. N.;
Venkatesh, V.; Banerjee, D. Synfacts 2008, 4. 406–406.
2. (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002,
102, 1359–1469; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int.
Ed. 2005, 44, 4442–4489; (c) Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M.
Chem. Rev. 2006, 106, 4622–4643; (d) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107,
133–173; (e) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–
9695; (f) Peng, C.; Wang, Y.; Wang, J. J. Am. Chem. Soc. 2008, 130, 1566–1567;
(g) Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292–15293.
3. (a) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651–2710; (b) Rouhi, A. M.
Chem. Eng. News 2004, 82, 49–58.
a-arylacetyl chlorides. Notably, ortho substitution in a-arylacetyl
chloride also afforded high yields of products. Notably, in all reac-
tions homo-coupling bi-aryl products from triarylbismuths12h,11b
were formed in minor amounts. However, higher amounts of bi-ar-
yls were formed in reactions with moderate cross-coupling yields.
In addition, the moderate cross-coupling yields in some cases may
also be due to electronics of the triarylbismuth nucleophiles to
some extent. This study has also demonstrated to be a viable route
for the synthesis of various regio-isomeric mono-, di- and tri-
substituted a-arylketones in high yields. It is noteworthy that syn-
4.
a-Arylation of ketones: (a) Mattson, A. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007,
129, 4508–4509; (b) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149–
6153; (c) Ooi, T.; Goto, R.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 10494–
10495; (d) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382–
12383; (e) Takemiya, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 14800–
14801; (f) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47, 6765–6768; (g) Battace, A.;
Zair, T.; Doucet, H.; Santelli, M. Tetrahedron Lett. 2006, 47, 459–462.
thesis of some of these compounds through traditional Friedel–
Crafts condition would be difficult.
The probable Pd-catalyzed mechanism given in Scheme 1 was
similar to the one proposed by Barton et al. for acid chloride cou-
plings.12h The initial oxidative addition of arylacetyl chloride A to
in situ generated-Pd(0) provides Pd(II) species B. This intermediate
upon transmetalation with triarylbismuth reagent further provides
C which undergoes reductive elimination to give the product D. Par-
ticipation of other species such as Ar2BiX/ArBiX2 or Ar3Bi (formed
through disproportionative regeneration of Ar2BiX or Ar2BiX)12h is
also possible during transmetalation. This way, triarylbismuths
would function as multi-coupling organometallic nucleophile with
the transfer of three aryl groups for coupling reaction. However,
homo-coupling of triarylbismuths in the presence of Pd catalyst is
a competitive pathway with the generation of bi-aryls as side
products.12h,11b
5. (a) Churruca, F.; SanMartin, R.; Tellitu, I.; Dominguez, E. Tetrahedron Lett. 2006,
47, 3233–3237; (b) Navarro, O.; Marion, N.; Oonishi, Y.; Kelly, R. A., III; Nolan, S.
P. J. Org. Chem. 2006, 71, 685–692; (c) Chang, H.-K.; Liao, Y.-C.; Liu, R.-S. J. Org.
Chem. 2007, 72, 8139–8141; (d) Angle, S. R.; Neitzel, M. L. J. Org. Chem. 2000, 65,
6458–6461; (e) Marion, N.; Ecarnot, E. C.; Navarro, O.; Amoroso, D.; Bell, A.;
Nolan, S. P. J. Org. Chem. 2006, 71, 3816–3821.
6. Sarvari, M. H.; Sharghi, H. J. Org. Chem. 2004, 69, 6953–6956.
7. Uses of aryl ketones: (a) Churruca, F.; SanMartin, R.; Tellitu, I.; Dominguez, E.
Eur. J. Org. Chem. 2005, 2481–2490; (b) Chen, C.; Dormer, P. G. J. Org. Chem.
2005, 70, 6964–6967; (c) Chen, G.-S. J.; Gibson, M. S. J. Chem. Soc., Perkin Trans. 1
1975, 1138–1139; (d) Carril, M.; SanMartin, R.; Tellitu, I.; Dominguez, E. Org.
Lett. 2006, 8, 1467–1470; (e) McKiernan, G. J.; Hartley, R. C. Org. Lett. 2003, 5,
4389–4392.
8. Dieter, R. K. Tetrahedron 1999, 55, 4177–4236.
9. (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636–3638; (b) Bumagin,
N. A.; Korolev, D. N. Tetrahedron Lett. 1999, 40, 3057–3060; (c) Haddach, M.;
McCarthy, J. R. Tetrahedron Lett. 1999, 40, 3109–3112; (d) Urawa, Y.; Ogura, K.
Tetrahedron Lett. 2003, 44, 271–273; (e) Kabalka, G. W.; Malladi, R. R.; Tejedor,
D.; Kelley, S. Tetrahedron Lett. 2000, 41, 999–1001; (f) Zhang, Y.; Rovis, T. J. Am.
Chem. Soc. 2004, 126, 15964–15965; (g) Bandgar, B. P.; Patil, A. V. Tetrahedron
Lett. 2005, 46, 7627–7630.
10. For example: (a) Liu, C.; He, C.; Shi, W.; Chen, M.; Lei, A. Org. Lett. 2007, 9,
5601–5604; (b) Xin, B.; Zhang, Y.; Cheng, K. J. Org. Chem. 2006, 71, 5725–5731.
11. Organobismuth Chemistry; Suzuki, H., Matano, Y., Eds.; Elsevier: Amsterdam,
2001; (b) Ohe, T.; Tanaka, T.; Kuroda, M.; Cho, C. S.; Ohe, K.; Uemura, S. Bull.
Chem. Soc. Jpn. 1999, 72, 1851–1855.
12. (a) Rao, M. L. N.; Jadhav, D. N.; Venkatesh, V. Tetrahedron Lett. 2009, 50,
4268–4271; (b) Rao, M. L. N.; Jadhav, D. N.; Banerjee, D. Tetrahedron 2008, 64,
5762–5772; (c) Rao, M. L. N.; Venkatesh, V.; Jadhav, D. N. J. Organomet. Chem.
2008, 693, 2494–2498; (d) Rao, M. L. N.; Venkatesh, V.; Banerjee, D. Tetrahedron
2007, 63, 12917–12926; (e) Rao, M. L. N.; Banerjee, D.; Jadhav, D. N.
Tetrahedron Lett. 2007, 48, 6644–6647; (f) Rao, M. L. N.; Banerjee, D.; Jadhav,
D. N. Tetrahedron Lett. 2007, 48, 2707–2711; (g) Rao, M. L. N.; Venkatesh, V.;
Jadhav, D. N. Tetrahedron Lett. 2006, 47, 6975–6978; (h) Barton, D. H. R.;
Ozbalik, N.; Ramesh, M. Tetrahedron 1988, 44, 5661–5668; (i) Rao, M. L. N.;
Yamazaki, O.; Shimada, S.; Tanaka, T.; Suzuki, Y.; Tanaka, M. Org. Lett. 2001, 3,
4103–4105.
In summary, we have disclosed an efficient cross-coupling of
a-arylacetyl chlorides with triarylbismuth nucleophiles as sub-
Oxidative
Transmetalation
(II)
Pd
Cl
addition
Ar1
(B)
BiAr3
Cl
Ar1
(A)
O
Ar2BiX
Ar
O
(II)
Pd
Pd(0)
Ar1
(C)
O
Reductive
elimination
Ar
Ar1
(D)
O
Scheme 1. Proposed catalytic cycle.