Organometallics 2009, 28, 6893–6901 6893
DOI: 10.1021/om9007967
Synthesis and Structure of Polynuclear Indoxanes and Thalloxanes
Containing Bulky m-Terphenyl Substituents
S. Usman Ahmad and Jens Beckmann*
€
Institut fu€r Chemie und Biochemie, Freie Universitat Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
Received September 11, 2009
Depending on the reaction conditions, the base hydrolysis of (2,6-Mes2C6H3In)2(μ-Cl)2Cl2 (1) in a
two-layer system of aqueous NaOH/diethyl ether or toluene afforded 2,6-Mes2C6H3InCl2 H2O (2),
3
(2,6-Mes2C6H3In)2(μ-OH)2Cl2 (3), (2,6-Mes2C6H3In)3(μ-OH)4Cl2 (4), and (2,6-Mes2C6H3In)4(μ-
OH)8 (5), respectively, in high yields. The indoxane 5 can be regarded as a heavier and aggregated
congener of arylboronic acids. An attempt at preparing (2,6-Mes2C6H3Tl)2(μ-Cl)2Cl2 (6) by the
chlorination of 2,6-Mes2C6H3Tl (prepared in situ from 2,6-Mes2C6H3Li and TlCl) using SO2Cl2
provided the isomeric diarylthallium cation [(2,6-Mes2C6H3)2Tl]TlCl4 (7). The exposure of crude
reaction mixture consisting of 2,6-Mes2C6H3Tl and LiCl to moist air surprisingly produced (2,6-
Mes2C6H3Tl)2(μ-OH)2Cl2 (8), which reacted with hydrochloric acid to give 6. Base hydrolysis of 8 in
a two-layer system of aqueous NaOH/CHCl3 proceeded with partial cleavage of the m-terphenyl
substituents and yielded the thalloxane cluster (2,6-Mes2C6H3Tl)4Tl2(μ3-O)4(μ-OH)6 (9) in moderate
yield. Compounds 1-9 were characterized by X-ray crystallography.
Introduction
and [(Me3Si)3CGa]4(μ-O)2(μ-OH)4, respectively.5 The de-
gree of condensation and aggregation within these clusters
depends on the method of preparation and most importantly
the nature of the organic substituents, which provide the
kinetic stabilization. In the same review it was pointed out
that there are surprisingly few studies dealing with the heavier
group 13 congeners, which was attributed to the reduced
oxophilicity and lower Lewis acidity of In and Tl.4 We are
aware of only two well-defined indoxane clusters,
The importance of boronic acids, RB(OH)2, and the related
boroxine rings, [RB(μ-O)]3, for many branches of chemistry
cannot be overstated. Arguably, the most prominent applica-
tion involves the use as reagents for transition metal catalyzed
cross-coupling reactions,1 but boronic acids are also of current
interest as building blocks in supramolecular chemistry2 and
for applications in carbohydrate sensing.3 The chemistry of
the heavier aluminoxanes and galloxanes also progresses
at a rapid pace, as highlighted by a recent review.4 This research
is stimulated by the industrial use of polymeric methylalumi-
noxane (MAO) as cocatalyst for the polymerization of ethylene.
While the exact structure of MAO is unknown, a number
of discrete molecular aluminoxane and galloxane clusters
were obtained by the controlled hydrolysis of sterically encum-
bered triorganoallanes and -gallanes. Well-defined examples
include the aluminoxane clusters (t-BuAl)6(μ3-O)4(μ-OH)4,
[t-BuAl(μ3-O)]n (n = 6, 7, 9, 12), [(2,4,6-t-Bu3C6H2Al)4(μ-
O)]4, and [(Me3Si)3CAl]4(μ-O)2(μ-OH)4 and the gallox-
ane clusters (t-BuGa)12(μ3-O)8(μ-O)2(μ-OH)4, (t-BuGa)9(μ3-
6
[(Me3Si)3CIn]4(μ4-O)(μ-OH)6 and [(Me3Si)3CIn(μ3-O)]4,7
which adopt an oxygen-centered adamantane structure and
a cubane-like structure, respectively. During the course of
this work two asymmetric four-membered galloxane and
indoxane rings, [2,6-(20,60-i-Pr2C6H3)C6H3E(μ-O)]2 (E =
Ga, In), were also reported in which further aggregation is
prevented by a bulky m-terphenyl substituent.8 Herein, we
report a number of complementary polynuclear indoxanes
(5) (a) Atwood, D. A.; Cowley, A. H.; Harris, P. R.; Jones, R. A.;
Koschmieder, S. U.; Nunn, C. M.; Atwood, J. L.; Bott, S. G. Organo-
metallics 1993, 12, 24. (b) Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron,
A. R. J. Am. Chem. Soc. 1993, 115, 4971. (c) Landry, C. C.; Harlan, C. J.;
Bott, S. G.; Barron, A. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 1201. (d)
Harlan, C. J.; Gillan, E. G.; Bott, S. G.; Barron, A. R. Organometallics 1996,
15, 5479. (e) Storre, S.; Klemp, A.; Roesky, H. W.; Schmidt, H.-G.;
Noltemeyer, M.; Fleischer, R.; Stalke, D. J. Am. Chem. Soc. 1996, 118,
1380. (f) Storre, S.; Schnitter, C.; Roesky, H. W.; Schmidt, H.-G.;
Noltemeyer, M.; Fleischer, R.; Stalke, D. J. Am. Chem. Soc. 1997, 119,
7505. (g) Storre, J.; Klemp, A.; Roesky, H. W.; Fleischer, R.; Stalke, D.
Organometallics 1997, 16, 3074. (h) Schnitter, C.; Roesky, H. W.; Albers, T.;
Schmidt, H.-G.; Riipken, C.; Parisini, E.; Sheldrick, G. M. Chem.;Eur. J.
1997, 3, 1783. (i) Wehmschulte, R. J.; Power, P. P. J. Am. Chem. Soc. 1997,
119, 8387.
O)9, [(MesGa)6(μ3-O4)(μ-OH)4 THF], (MesGa)9(μ3-O)6(μ-O)3,
3
*Corresponding author. E-mail: beckmann@chemie.fu-berlin.de.
(1) Hall, D. G., Ed. Boronic Acids; Wiley-VCH: Weinheim, 2005; and
references therein.
(2) (a) Braga, D.; Polito, M.; Bracaccini, M.; D’Addario, D.; Tagliavini,
E.; Sturba, L.; Grepioni, F. Organometallics 2003, 22, 2142. (b) Fournier,
J.-H.; Maris, T.; Wuest, J. D.; Guo, W.; Galoppini, E. J. Am. Chem. Soc. 2003,
125, 1002. (c)Pedireddi, V. R.;Lekshmi, N. S.Tetrahedron Lett. 2004, 45, 1903.
(d) Fujita, N.; Shinkai, S.; James, T. D. Chem. Asian J. 2008, 3, 1076. (e)
Mastalerz, M. Angew. Chem., Int. Ed. 2008, 47, 445. (f) Severin, K. Dalton
Trans. 2009, 5254, and references therein.
(3) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1910. (b) James, T. D.; Shinkai, S. Top.
Curr. Chem. 2002, 218, 159, and references therein.
(4) Roesky, H. W.; Walawalkar, M. G.; Murugavel, R. Acc. Chem.
Res. 2001, 34, 201, and references therein.
(6) Al-Juaid, S. S.; Buttrus, N. H.; Eaborn, C.; Hitchcock, P. B.;
Roberts, A. T. L.; Smith, J. D.; Sullivan, A. C. J. Chem. Soc., Chem.
Commun. 1986, 908.
(7) Uhl, W.; Pohlmann, M. Chem. Commun. 1998, 451.
(8) Zhu, Z.; Wright, R. J.; Brown, Z. D.; Fox, A. R.; Phillips, A. D.;
Richards, A. F.; Olstead, M. M.; Power, P. P. Organometallics 2009, 28,
2512.
r
2009 American Chemical Society
Published on Web 10/29/2009
pubs.acs.org/Organometallics