in the selectivity issues. The present work illustrates a new
methodology of general value for the synthesis of the entire
members of the phoslactomycin family. In addition, this work
exemplifies the synthetic utility of our b-ICD–HFIPA method.
This work was partly supported by a Grant-in-Aid for
Scientific Research of JSPS and MEXT.
Notes and references
z The absolute configuration and the enantiomeric purity of 10 and 11
were determined by chiral HPLC analysis and 1H NMR analysis of the
R- and S-Mosher’s esters after converting them to methyl ester 12,
respectively.
y Reductive opening of the epoxide of 15 failed under various
conditions and always gave a complex mixture.
1 (a) Y. Sekiyama, N. Palaniappan, K. A. Reynolds and H. Osada,
Tetrahedron, 2003, 59, 7465; (b) S. D. Choudhuri, S. Ayers,
W. H. Soine and K. V. Reynolds, J. Antibiot., 2005, 58, 573;
(c) N. Mizuhara, Y. Usuki, M. Ogita, K. Fujita, M. Kuroda,
M. Doe, H. Iio and T. Tanaka, J. Antibiot., 2007, 60, 762 and
references therein.
2 T. Teruya, S. Shimizu, N. Kanoh and H. Osada, FEBS Lett., 2005,
579, 2463 and references therein.
3 C. M. Konig, B. Gebhardt, C. Schleth. M. Dauber and U. Koert,
¨
Org. Lett., 2009, 11, 2728.
4 (a) Y.-G. Wang, T. Takeyama and Y. Kobayashi, Angew. Chem.,
Int. Ed., 2006, 45, 3320; (b) H. Nonaka, N. Maeda and
Scheme 4 Reagents and conditions. (i) DIBAH, THF, ꢁ78 1C;
(ii) Dess–Martin periodinane, CH2Cl2; (iii) (Z)-2-pentene, t-BuOK,
n-BuLi, THF, ꢁ78 1C, then (+)-(Ipc)2BOMe, BF3ꢂEt2O, THF–Et2O,
ꢁ78 to ꢁ50 1C, then 1 M NaOH; (iv) LiCNꢂacetone, THF, reflux;
(v) LiAlH4, Et2O, then Boc2O, NaHCO3, H2O–MeOH; (vi)
ClCOCH2CHQCH2, i-Pr2EtN, CH2Cl2, 0 1C; (vii) Grubbs’ 2nd
(0.1 equiv.), CH2Cl2, reflux; (viii) ZrCl4 (0.8 equiv.), i-PrOH, 50 1C;
(ix) 5 M HCl, THF, then CH2QCHCH2OCOCl, NaHCO3; (x)
Et3SiOTf, 2,6-lutidine, CH2Cl2, ꢁ78 1C; (xi) (COCl)2, DMSO,
CH2Cl2, ꢁ78 to ꢁ40 1C then Et3N, 0 1C; (xii) HCCMgBr, CeCl3,
THF, ꢁ50 1C; (xiii) Dess–Martin periodinane, CH2Cl2.
Y.
Kobayashi,
Tetrahedron
Lett.,
2007,
48,
5601;
(c) S. Shibahara, M. Fujino, Y. Tashiro, K. Takahashi,
J. Ishihara and S. Hatakeyama, Org. Lett., 2008, 10, 2139;
(d) V. Druais, M. J. Hall, C. Corsi, S. V. Wendeborn, C. Meyer
and J. Cossy, Org. Lett., 2009, 11, 935.
5 (a) K. Shimada, Y. Kabburagi and T. Fukuyama, J. Am. Chem.
Soc., 2003, 125, 4048; (b) K. Miyashita, T. Tsunemi,
T. M. Hosokawa, Ikejiri and T. Imanishi, Tetrahedron Lett.,
2007, 48, 3829; (c) K. Miyashita, T. Tsunemi, T. Hosokawa,
M. Ikejiri and T. Imanishi, J. Org. Chem., 2008, 73, 5360;
(d) J. Moıse, R. P. Sonawane, C. Corsi, S. V. Wendeborn,
¨
S. Arseniyadis and J. Cossy, Synlett, 2008, 2617.
6 For reviews, see: (a) M. Shibasaki and M. Kanai, Heterocycles,
2005, 66, 727; (b) K. Miyashita, M. Ikejiri, T. Tsunemi,
A. Matsumoto and T. Imanishi, J. Synth. Org. Chem., Jpn.,
2007, 65, 874.
7 Y. Hayashi, H. Yamaguchi, M. Toyoshima, K. Okado, T. Toyo
and M. Shoji, Org. Lett., 2008, 10, 1405.
8 T. Takeuchi, K. Kuramochi, S. Kobayashi and F. Sugawara, Org.
Lett., 2006, 8, 5307.
The crucial nucleophilic opening of the epoxide turned out
to be low yielding under the common conditions using KCN,
Et2AlCN and TMSCN. However, we were pleased to find that
LiCNꢂacetone complex promoted this reaction effectively.
Thus, according to the procedure developed by Ciaccio
et al.,17 26 was reacted with LiCNꢂacetone complex at 40 1C
in THF to afford 27 in good yield. Reduction of 27 with
LiAlH4 followed by tert-butoxycarbonylation gave 28. Upon
acryloylation followed by ring closing metathesis using
Grubbs’ second generation catalyst, 28 gave 29 in almost the
same yield as that of 21, indicating that the N-Boc-aminoethyl
group did not hamper the ring closing metathesis.
9 T. Esumi, N. Okamoto and S. Hatakeyama, Chem. Commun.,
2002, 3042.
10 For a leading review, see: D. Basavaiah, K. V. Rao and
R. J. Reddy, Chem. Soc. Rev., 2007, 36, 1581.
11 (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama,
J. Am. Chem. Soc., 1999, 121, 10219; (b) A. Nakano, S. Kawahara,
S. Akamatsu, K. Morokuma, M. Nakatani, Y. Iwabuchi and
S. Hatakeyama, Tetrahedron, 2006, 64, 1132; (c) S. Hatakeyama,
J. Synth. Org. Chem., Jpn., 2007, 65, 1089.
In the same manner as described above for the synthesis
of 3, ynone 4 was successfully synthesized from 29. Thus,
ZrCl4-promoted deprotection of the methoxymethyl group of
29 again afforded 30 cleanly, which, upon successive acidic
hydrolysis, allyloxycarbonylation and silylation, gave 31 in
good yield. Exposure of 31 to Swern oxidation conditions18
allowed the direct production of 32 via selective cleavage of the
primary triethylsilyl ether group. Finally, addition of acetylene
followed by Dess–Martin oxidation converted 32 to ynone 4.
At this stage, a formal synthesis of (+)-phoslactomycin B (2)4c
was also accomplished.
12 (a) B. E. Rossiter, T. R. Verhoeven and K. B. Sharpless,
Tetrahedron Lett., 1979, 20, 4733; (b) S. Hatakeyama,
K. Sugawara and S. Takano, Tetrahedron Lett., 1991, 32, 4513.
13 P. K. Jadhav, K. S. Bhat, P. T. Perumal and H. C. Brown, J. Org.
Chem., 1986, 51, 432.
14 (a) A. Yanagisawa, H. Kageyama, Y. Nakatsuka, K. Asakawa,
Y. Matsumoto and H. Yamamoto, Angew. Chem., Int. Ed., 1999,
38, 3701; (b) K. Fujii, K. Maki, M. Kanai and M. Shibasaki, Org.
Lett., 2003, 5, 733.
15 For a review, see: R. H. Grubbs and S. Chang, Tetrahedron, 1998,
54, 4413.
16 G. V. M. Sharma, K. L. Reddy, P. S. Lakshmi and P. R. Krishna,
Tetrahedron Lett., 2004, 45, 9229.
17 J. A. Ciaccio, M. Smrtka, W. A. Maio and D. Rucando,
Tetrahedron Lett., 2004, 45, 7201.
´
18 A. Rodrıguez, M. Nomen, B. W. Spurand and J. J. Godfroid,
In conclusion, we have achieved the formal asymmetric
synthesis of 1 and 2 from the common intermediate 16. This
represents a significant improvement of our previous synthesis
Tetrahedron Lett., 1999, 40, 5161.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5907–5909 | 5909