6270
M. Yoshida et al. / Tetrahedron Letters 50 (2009) 6268–6270
2. (a) Patterson, J. M. Synthesis 1976, 281; (b) Lipshutz, B. H. Chem. Rev. 1986, 86,
795; (c) Schroeter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245.
3. (a) Trofimov, B. A.; Mikhaleva, A. I. Heterocycles 1994, 37, 1193; (b) Balme, G.;
Bouyssi, D.; Monteiro, N. Heterocycles 2007, 73, 87; (c) Patil, N. T.; Yamamoto, Y.
ARKIVOC 2007, 121; (d) Schmuck, C.; Rupprecht, D. Synthesis 2007, 3095; (e)
Ono, N. Heterocycles 2008, 75, 243.
4. Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293.
5. Chen, D.-D.; Hou, X-L.; Dai, L.-X. Tetrahedron Lett. in press. doi:10.1016/
Abarbi, M. Synthesis 2009, 257; (t) Ding, Q.; Chen, Z.; Yu, X.; Peng, Y.; Wu, J.
Tetrahedron Lett. 2009, 50, 340.
8. Yoshida, M.; Al-Amin, M.; Matsuda, K.; Shishido, K. Tetrahedron Lett. 2008, 49,
5021.
9. General procedure for iodine-promoted electrophilic cyclizations: to
a stirred
solution of propargylic aziridine 1a (200 mg, 0.711 mmol) in dioxane (20.0 mL)
were gradually added iodine (360.7 mg, 1.42 mmol) and NaHCO3 (298.7 mg,
3.56 mmol) at rt. After stirring for 10 min at 100 °C, the reaction mixture was
cooled to rt and the excess iodine was removed by washing with a saturated
aqueous solution of Na2S2O3. The aqueous solution was then extracted with
Et2O and the combined organic layers were dried over MgSO4. Concentration at
reduced pressure gave the residue, which was purified by flash
chromatography using hexane–AcOEt (98:2) as the eluent to give the 3-
iodopyrrole 2a (260.6 mg, 90%) as a colorless oil. Compound 2a: IR (neat) 3087,
6. Yoshida, M.; Al-Amin, M.; Shishido, K. Synthesis 2009, 2454.
7. For selected examples, see: (a) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org.
Lett. 2001, 3, 651; (b) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3,
2973; (c) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905; (d) Huang, Q.;
Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437; (e) Arcadi, A.; Cacchi, S.;
Giuseppe, S. D.; Fabrizi, G.; Marinelli, F. Org. Lett. 2002, 4, 2409; (f) Yao, T.;
Larock, R. C. J. Org. Chem. 2003, 68, 5936; (g) Hessian, K. O.; Flynn, B. L. Org. Lett.
2003, 5, 4377; (h) Peng, A. Y.; Ding, Y. X. Org. Lett. 2004, 6, 1119; (i) Yao, T.;
Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677; (j) Yue, D.; Della, C. N.;
Larock, R. C. Org. Lett. 2004, 6, 1581; (k) Yao, T.; Larock, R. C. J. Org. Chem. 2005,
70, 1432; (l) Barluenga, J.; Trincado, M.; Marco-Arias, M.; Ballesteros, A.; Rubio,
E.; Gonzalez, J. M. Chem. Commun. 2005, 2008; (m) Sniady, A.; Wheeler, K. A.;
Dembinski, R. Org. Lett. 2005, 7, 1769; (n) Liu, Y.-H.; Song, F.-J.; Cong, L. Q. J. Org.
Chem. 2005, 70, 6999; (o) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70,
10292; (p) Bi, H.-P.; Guo, L.-N.; Duan, X.-H.; Gou, F.-R.; Huang, S.-H.; Liu, X.-Y.;
Liang, Y.-M. Org. Lett. 2007, 9, 397; (q) Fischer, D.; Tomeba, H.; Pahadi, N. K.;
Patil, N. T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 4764; (r) Xie, Y.-X.;
Liu, X.-Y.; Wu, L.-Y.; Han, Y.; Zhao, L.-B.; Fan, M.-J.; Liang, Y.-M. Eur. J. Org. Chem.
2008, 1013; (s) Cherry, K.; Duchêne, A.; Thibonnet, J.; Parrain, J.-L.; Anselmi, E.;
3063, 3028, 2927, 2851, 1605, 1545, 1496, 1453, 1415, 1373 cmÀ1 1H NMR
;
(400 MHz, CDCl3) d 7.30À7.21 (3H, m), 6.84 (2H, d, J = 7.6 Hz), 6.02 (1H, s), 5.08
(2H, s), 2.44 (2H, t, J = 7.6 Hz), 2.28 (1H, tt, J = 11.2 and 3.2 Hz), 1.78À1.64 (5H,
m), 1.41À1.18 (7H, m), 0.86 (3H, t, J = 7.2 Hz); 13C NMR (100 MHz, CDCl3) d
140.53, 138.67, 133.21, 128.70, 127.17, 125.43, 110.51, 61.64, 47.45, 35.89,
33.98, 28.92, 26.59, 26.00, 23.21, 13.91; HRMS (ESI) m/z calcd for C20H26NNaI
(M++Na) 430.1008, found 430.1010.
10. For this reason, the co-produced hydrogen iodide would catalyze the
cycloisomerization of 1a to non-iodinated pyrrole 3. By the use of 5 equiv of
NaHCO3, it is expected that the acidity of hydrogen iodide was efficiently
neutralized to lead predominant production of 2a.
11. (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340; (b) Erdik, E. Tetrahedron 1992, 48,
9577.