Carofiglio et al.
JOCArticle
dichroism,3 fluorescence,4 NMR,5 and resonance Raman
spectroscopy6).
flexible covalent tether. These constructs have been exploited
to assess the absolute stereochemical configuration of chiral
amines,13b,g,h alcohols,13g and carboxylic acids13i through
the sign of the exciton-coupled circular dichroism in the
porphyrin spectral region. Another prosperous field of appli-
cation for bis-porphyrin hosts deals with the self-assembling
of donor-acceptor systems promoted by the π-π stacking
between a fullerene curved surface and a porphyrin macro-
cycle.12a,15 Such fullerene-porphyrin recognition motif has
been successfully employed for selective extraction of higher
fullerenes,15c and to build photovoltaic devices.15b Despite
these desirable features, the synthesis of porphyrin dimers or
oligomers in high yield and purity is often an onerous task
imposing multistep procedures and reiterated chromatogra-
phy purification.
We have recently established a straightforward approach
for the modular synthesis of porphyrin dyads16 that relies on
the unique temperature-dependent reactivity of cyanuric
chloride, CC, toward nucleophiles.17 Typically, the first
chloride reacts rapidly at 0 °C, whereas room temperature
or moderate heating (depending on the nucleophile strength)
promotes the second substitution. The nucleophilic displace-
ment of the third chloride requires harsher conditions (T >
80 °C for multiple hours). Since quantitative yields are often
achieved for these reactions, sequential, one-flask introduc-
tion of various substituents into a triazine ring is also
feasible.
As a result, a number of single-porphyrin receptors have
been developed for the recognition of simple molecules in-
cluding alcohols,7 amines,8 and carbohydrates.9 In these
systems, binding specificity through metal coordination is
aided by secondary sterical interactions operated with bulky
substituents (picket-fence10 porphyrins), as well as by capping
the macrocycle with hydrophobic pockets (basket-handle11
porphyrins). Moreover, decoration of the porphyrin ring
with complementary and multiple hydrogen bonding sites
implements directionality into the recognition process while
improving the selectivity as well. However, these additional
secondary interactions play a fundamental role for shape
discrimination, but they do not necessarily improve the bind-
ing strength of the substrate. In this regard, recognition of
multifunctional molecules can take advantage of more than
one porphyrin site.12 A multisite/substrate-receptor mutual
interaction guarantees an enhanced binding stability thus
allowing the resulting supramolecular assembly to be present
as the main entity in solution. For instance, dimeric metallo-
porphyrin hosts with tweezer-like structures have been
designed to effectively complex bifunctional guests through
a ditopic interaction. A prominent example among these
compounds is the dimeric metalloporphyrin hosts that consist
of two achiral zinc-13 or magnesium-porphyrins14 linked by a
The benefits of this synthetic methodology are readily
envisaged in the design of porphyrin-dyads where the overall
stereoelectronic diversity can be generated by a proper
synthesis/selection of the isolated components in a homo-
dimer arrangement, by the combination of these within an
heterodimeric structure, and/or by differential metalation of
the porphyrin units.16
ꢀ
(3) (a) Monsu Scolaro, L.; Andrea Romeo, A.; Pasternack, R. F. J. Am.
Chem. Soc. 2004, 126, 7178–7179. (b) Balaz, M.; Holmes, A. E.; Benedetti,
M.; Rodriguez, P. C.; Berova, N.; Nakanishi, K.; Proni, G. J. Am. Chem. Soc.
2005, 127, 4172–4173.
(4) (a) Zhang, Y.; Yang, R. H.; Liu, F.; Li, K. A. Anal. Chem. 2004, 76,
7336–7345. (b) Zhou, H.; Baldini, L.; Hong, J.; Wilson, A. J.; Hamilton, A.
D. J. Am. Chem. Soc. 2006, 128, 2421–2425.
(5) (a) Shundo, A.; Labuta, J.; Hill, J. P.; Ishihara, S.; Ariga, K. J. Am.
Chem. Soc. 2009, 131, 9494–9495. (b) Tong, Y.; Hamilton, D. G.; Meillon,
J.-C.; Sanders, J. K. M. Org. Lett. 1999, 1, 1343–1346.
Herein, we explore the binding properties of the melamine-
bridged bis-porphyrin scaffold as ditopic receptor for biden-
tate ligands. In particular, the steric constrains of the macro-
cycle components are expected to affect the conformational
stability and binding geometry of the dyad whereby the two
porphyrin units are forced into close proximity as a conse-
quence of the recognition event. To this aim, we used two
amino-porphyrin building blocks P and M, respectively car-
rying phenyl and mesityl meso-subsituents, to yield the homo-
conjugates free bases PP and MM and the heterodyad PM
(Scheme 1). After metalation with Zn(II), a small library of
three structurally related bis-porphyrin receptors is readily
obtained, namely P(Zn)P(Zn), P(Zn)M(Zn), and M(Zn)M-
(Zn) derivatives. The steric hindrance at the peripheral posi-
tions is supposed to increase steadily from P(Zn)P(Zn) to
M(Zn)M(Zn), the heterodimer P(Zn)M(Zn) being in a mid-
way condition. The binding properties of these receptors have
(6) (a) Uchida, T.; Kitagawa, T. Acc. Chem. Res. 2005, 38, 662–670. (b)
Satake, A.; Miyajima, Y.; Kobuke, Y. Chem. Mater. 2005, 17, 716–724.
(7) (a) Neal, A.; Rakow, N. A.; Suslick, K. S. Nature 2000, 306, 710–713.
(b) Lvova, L.; Di Natale, C.; Paolesse, R.; D’Amico, A. Sens. Actuators, B
2006, 118, 439–447.
(8) (a) Dunbar, A. D. F.; Richardson, T. H.; McNaughton, A. J.;
Hutchinson, J.; Hunter, C. A. J. Phys. Chem. B 2006, 110, 16646–16651.
(b) Bang, J. H.; Lim, S. H.; Park, E.; Suslick, K. S. Langmuir 2008, 24, 13168–
13172. (c) Deviprasad, G. R.; D’Souza, F. Chem. Commun. 2000, 1915–1916.
(9) Mizutani, T.; Kurahashi, T.; Murakami, T.; Noriyoshi Matsumi, N.;
Ogoshi, H. J. Am. Chem. Soc. 1997, 119, 8991–9001.
(10) Collman, J. P. Inorg. Chem. 1997, 36, 5145–5155.
(11) Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem.
1995, 60, 6585–6587.
(12) (a) Hosseini, A.; Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C. A.;
Boyd, P. D. W. J. Am. Chem. Soc. 2006, 128, 15903–15913. (b) Yagi, S.; Ezoe,
M.; Yonekura, I.; Takagishi, T.; Nakazumi, H. J. Am. Chem. Soc. 2003, 125,
4068–4069. (c) Kuroda, Y.; Kawashima, A.; Hayashi, Y.; Ogoshi, H. J. Am.
Chem. Soc. 1997, 119, 4929–4933. (d) Phillips-McNaughton, K.; Groves, J.
T. Org. Lett. 2003, 5, 1829–1832. (e) Kuramochi, Y.; Satake, A.; Kobuke, Y.
J. Am. Chem. Soc. 2004, 126, 8668–8669.
(13) (a) Yang, Q.; Olmsted, C.; Borhan, B. Org. Lett. 2002, 4, 3423–3426.
(b) Li, X.; Tanasova, M.; Vasileiou, C.; Borhan, B. J. Am. Chem. Soc. 2008,
130, 1885–1893. (c) Huang, X.; Rickman, B. H.; Borhan, B.; Berova, N.;
Nakanishi, K. J. Am. Chem. Soc. 1998, 120, 6185–6186. (d) Chen Y.; Petrovic,
A. G.; Roje, M.; Pescitelli, G.; Kayser, M. M.; Yang, Y.; Berova, N.; Proni, G.
Chirality DOI: 10.1002/chir.20718. Published Online: Apr 22, 2009. (e) Petrovic,
A. G.; Chen, Y.; Pescitelli, G.; Berova, N.; Proni, G. Chirality DOI: 10.1002/
chir.20717. Published Online: Apr 22, 2009. (f) Tanasova, M.; Vasileiou, C.;
ꢀ
been studied vis-a-vis the aliphatic R,ω-diamines of general
formula H2N-(CH2)n-NH2 (n = 4-8). Multidimensional
NMR spectroscopy techniques combined with molecular
(15) (a) Marois, J.-S.; Cantin, K.; Desmarais, A.; Morin, J.-F. Org. Lett.
2008, 10, 33–36. (b) Nagata, N.; Kuramochi, Y.; Kobuke, Y. J. Am. Chem.
Soc. 2009, 131, 10–11. (c) Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc.
2004, 126, 6570–6571. (d) Boyd, P. D. W.; Reed, C. A. Acc. Chem. Res. 2005,
38, 235–242.
ꢁ
Olumolade, O. O.; Borhan, B. Chirality 2009, 21, 374–382. (g) Kurtan, T.;
Nesnas, N.; Koehn, F. E.; Li, Y.-Q.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc.
2001, 123, 5974–5982. (h) Huang, X.; Fujioka, N.; Pescitelli, G.; Koehn, F. E.;
Williamson, R. T.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2002, 124,
10320–10335. (i) Yang, Q.; Olmsted, C.; Borhan, B. Org. Lett. 2002, 4, 3423–
3426.
(16) Carofiglio, T.; Varotto, A.; Tonellato, U. J. Org. Chem. 2004, 69,
8121–8124.
(14) Proni, G.; Pescitelli, G.; Huang, X.; Nakanishi, K.; Berova, N. J. Am.
Chem. Soc. 2003, 125, 12914–12927.
(17) (a) Blotny, G. Tetrahedron 2006, 62, 9507–9522. (b) Blotny, G.
Tetrahedron Lett. 2003, 44, 1499–1501.
J. Org. Chem. Vol. 74, No. 23, 2009 9035