6334
M. Ismail et al. / Tetrahedron Letters 50 (2009) 6332–6334
J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925; (e) Busto, E.; Gotor-
Fernández, V.; Gotor, V. Adv. Synth. Catal. 2006, 348, 2626; (f) Duffey, T. A.;
Shaw, S. A.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14.
pentadienyl and pyrrolidine moieties. The latter adopts an enve-
lope conformation with the out-of-plane carbon [C(42)] adjacent
to the cyclopentadienyl group, towards which is projected an
equatorial hydrogen. The pyridine carbon C(38) is bent 36° out of
the plane defined by C(42)–N(2)–C(39) which is indicative of some
sp3 character in the pyrrolidine nitrogen. This deviation from the
sp2 pyrrolidine nitrogen of 4-pyrrolidinopyridine (PPY), and the
resulting reduction in the magnitude of the nN?pꢁðC@ interaction,
6. N-Heterocyclic carbene and amidine catalysts have also been applied to the
rearrangement of oxindole derived enol carbonates: (a) Thomson, J. E.; Kyle, A.
F.; Gallagher, K. A.; Lenden, P.; Concellón, C.; Morrill, L. C.; Miller, A. J.;
Joannesse, C.; Slawin, A. M. Z.; Smith, A. D. Synthesis 2008, 2805; (b) Joannesse,
C.; Simal, C.; Concellón, C.; Thomson, J. E.; Campbell, C. D.; Slawin, A. M. Z.;
Smith, A. D. Org. Biomol. Chem. 2008, 6, 2900.
7. Nguyen, H. V.; Butler, D. C. D.; Richards, C. J. Org. Lett. 2006, 8, 769.
8. Underwood, R.; Prasad, K.; Repic, O.; Hardtmann, G. E. Synth. Commun. 1992, 22,
343.
9. Synthesis of 6a: A solution of 1,3-dimethyl-5-methoxyindolin-2-one (0.592 g,
3.1 mmol) in THF (4 mL) was added slowly to a solution of KHMDS (0.743 g,
3.7 mmol) in THF (4 mL) at ꢀ78 °C. The solution was stirred at ꢀ78 °C for
30 min, then transferred via cannula to a solution of phenyl chloroformate
(0.47 mL, 3.7 mmol) in THF (5 mL) at ꢀ78 °C. The solution was allowed to
warm to rt, then poured into 0.1 M HCl, and extracted with Et2O. The combined
organic layers were washed with brine, dried over MgSO4, filtered and
concentrated in vacuo. The residue was purified by flash chromatography
CÞ
accounts for the reduction in the activity of 3 compared to PPY and
4-dimethylaminopyridine (DMAP) as catalysts in alcohol acetyla-
tion reactions.7,15 The steric impediment of a cyclobutadiene-ap-
pended phenyl group may also be a factor. However, it must be
stressed that 3 is still a very active nucleophilic catalyst and the
relatively high catalyst loading of 5 mol % required for the rear-
rangement of oxindole-derived enol carbonates is a consequence
of the low activity and challenging nature of this class of substrate.
In summary, we have demonstrated that the synthetically
accessible chiral nucleophilic catalyst 3 is applicable to the asym-
metric rearrangement of an oxindole-derived enol carbonate, and
in particular to the generation of highly scalemic phenyl 1,3-di-
methyl-5-methoxy-2-oxoindoline-3-carboxlate following enant-
ioenrichment by recrystallisation. The utilisation of this building
block for the synthesis of indole alkaloids and related compounds
is currently in progress.
(silica gel, 20–60
colourless crystalline solid (0.61 g, 63%): Mp 59–61 °C; IR (Nujol) mmax 1781
(C@O) cmꢀ1 1H NMR (CDCl3, 400 MHz) d 7.44–7.39 (2H, m), 7.33–7.25 (3H, m),
lm) with EtOAc/hexane (5:95) as the eluent, yielding 6a as a
;
7.13 (1H, d, J = 7.1 Hz), 6.97 (1H, d, J = 1.5 Hz), 6.86 (1H, dd, J = 7.1, 1.5 Hz), 3.84
(3H, s), 3.60 (3H, s), 2.20 (3H, s); 13C NMR (CDCl3, 100 MHz) d 2 ꢂ 154.6, 151.3,
139.4, 2 ꢂ 130.0, 128.0, 126.8, 2 ꢂ 120.8, 111.8, 110.1, 101.5, 96.6, 56.3, 28.8,
7.7. HRMS (m/z, EI): found for MH+ 312.1234. C18H18NO4 requires 312.1230.
Analytical TLC, EtOAc/hexane (3:7), Rf = 0.65.
10. Synthesis of 7a:
A solution of catalyst 3 (5.1 mg, 0.008 mmol) in
dichloromethane (5.0 mL) was added to 6a (50 mg, 0.16 mmol). After 18 h,
the solution was concentrated in vacuo. The crude residue was dissolved in
dichloromethane and purified by flash column chromatography with CH2Cl2/
hexane (90:10) to yield 7a (50% yield, 48% ee): Mp 114–116 °C; IR (Nujol) mmax
1761 (C@O), 1717 (C@O) cmꢀ1 1H NMR (CDCl3, 400 MHz) d 7.27–7.23 (2H, m),
;
Acknowledgements
7.14–7.10 (1H, m), 6.91–6.86 (3H, m), 6.82 (1H, dd, J = 7.8, 1.5 Hz), 6.75 (1H, d,
J = 7.8 Hz), 3.75 (3H, s), 3.21 (3H, s), 1.69 (3H, s). 13C NMR (100 MHz) d 174.6,
168.6, 156.5, 150.6, 137.4, 131.3, 2 ꢂ 129.5, 126.3, 2 ꢂ 121.4, 113.7, 110.5,
109.3, 56.1, 26.9, 20.3. HRMS (m/z, EI): found for MH+ 312.1233. C18H18NO4
requires 312.1230. HPLC (Chiralcel OD, 0.46 cm ꢂ 25 cm, 95:05 hexane/i-
propanol, 1.0 mol/min) TR = 19.6 min (minor), TR = 23.5 min (major). Analytical
TLC, 35% EtOAc/hexane, Rf = 0.31.
We thank the EPSRC for a studentship (NVN) and the British
Council of Pakistan and Higher Education Commission of Pakistan
for financial support (MI). We also thank the EPSRC National Mass
Spectrometry Service Centre (Swansea University).
11. HPLC data for 7d (Chiralcel OD, 0.46 cm ꢂ 25 cm, 98:2 hexane/i-propanol,
1.0 mL/min). TR = 19.6 min (major), TR = 22.3 min (minor). Analytical TLC, 30%
EtOAc/hexane, Rf = 0.54.
References and notes
12. Recrystallisation of 7a: A solution of 7a (25 mg, 48% ee) in 4 mL of HPLC grade
hexane/i-propanol (6:1) was allowed to stand open to the atmosphere for one
week at room temperature. Pale yellow square shaped crystals surrounded by
a viscous liquid were obtained. The crystals were washed with a little amount
of hexane followed by a little amount of methanol. HPLC (Chiralcel OD)
revealed the crystals (12 mg, 48%) to be a perfect racemate of 7a, and the
evaporated mother liquor (12 mg, 48%) to be 7a with 95% ee.
13. (a) Lorenz, H.; Polenske, D.; Seidel-Morgenstern, A. Chirality 2006, 18, 828; (b)
Polenske, D.; Lorenz, H.; Seidel-Morgenstern, A. Cryst. Growth Des. 2007, 7,
1628.
1. (a) Pellegrini, C.; Strässler, C.; Weber, M.; Borschberg, H.-J. Tetrahedron:
Asymmetry 1994, 5, 1979; (b) Yokoshima, S.; Tokuyama, H.; Fukuyama, T.
Angew. Chem., Int. Ed. 2000, 39, 4073; (c) Baran, P. S.; Richter, J. M. J. Am. Chem.
Soc. 2005, 127, 15394; (d) Edmondson, S. D.; Danishefsky, S. J. Angew. Chem., Int.
Ed. 1998, 37, 1138; (e) von Nussbaum, F.; Danishefsky, S. J. Angew. Chem., Int.
Ed. 2000, 39, 2175.
2. (a) Lee, T. B. K.; Wong, G. S. K. J. Org. Chem. 1991, 56, 872; (b) Huang, A.;
Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043; (c) Kawasaki,
T.; Ogawa, A.; Takashima, Y.; Sakamoto, M. Tetrahedron Lett. 2003, 44, 1591; (d)
Austin, J. F.; Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl.
Acad. Sci. 2004, 101, 5482.
3. (a) Ashimori, A.; Matsuura, T.; Overman, L. E.; Poon, D. J. J. Org. Chem. 1993, 58,
6949; (b) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590.
4. Wurz, R. P. Chem. Rev. 2007, 107, 5570.
5. (a) Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532; (b) Hills, I. D.; Fu, G.
C. Angew. Chem., Int. Ed. 2003, 42, 3921; (c) Shaw, S. A.; Aleman, P.; Vedejs, E. J.
Am. Chem. Soc. 2003, 125, 13368; (d) Shaw, S. A.; Aleman, P.; Christy, J.; Kampf,
14. Crystal data 3: C44H39CoN2, M = 654.70, orthorhombic, a = 10.7478(13),
b = 11.808(2), c = 26.305(5) Å,
group P212121, Z = 4, Dc = 1.303 Mg/m3,
15287, reflections unique 6527 with R(int) = 0.0976, T = 120(2) K, final
indices [F2 > 2 (F2)] R1 = 0.0658, wR2 = 0.1059 and for all data R1 = 0.1683,
a
= 90°, b = 90°,
c
= 90°, V = 3338.4(9) Å3, space
l
= 0.549 mmꢀ1, reflections measured
R
r
wR2 = 0.1337. Absolute structure parameter = 0.02(2). CCDC No. = 720582.
15. Spivey, A. C.; Arseniyadis, S. Angew. Chem., Int. Ed. 2004, 43, 5436.