D. C. Miller et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6144–6147
6147
R1
N
N
Ar
References and notes
R1
H2NOC
i
iii
iv
NC
1. Grigoriadis, D. E.; Haddach, M.; Ling, N.; Saunders, J. Curr. Med. Chem. 2001, 1,
63.
2. Holsboer, F.; Ising, M. Eur. J. Pharmacol. 2008, 583, 350.
OEt
R1
ii
CN
H2N
3. (a) Sirinasthsinghji, D. J. S. Brain Res. 1985, 336, 45; (b) Sirinathsinghji, D. J. S.
Brain Res. 1986, 375, 49; (c) Heinrichs, S. C.; Min, H.; Tamraz, S.; Carmouche, M.;
Boehme, S. A.; Vale, W. W. Psychoneuroendocrinology 1997, 22, 215; (d) Jones, J.
E.; Pick, R. R.; Davenport, M. D.; Keene, A. C.; Corp, E. S.; Wade, G. N. Am. J.
Physiol. 2002, 283, R591.
4. (a) Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.; Zaczek, R.; Fitzgerald, L.
W.; McElroy, J.; Smith, M. A.; Shen, H. S. L.; Saye, J. A.; Christ, D.; Trainor, G.;
Robertson, D. W.; Hartig, P. Bioorg. Med. Chem. 2000, 8, 181; (b) Chen, C.;
Wilcoxen, K. M.; Huang, C. Q.; McCarthy, J. R.; Chen, T.; Grigoriadis, D. E. Bioorg.
Med. Chem. Lett. 2004, 14, 3669; (c) Dzierba, C. D.; Takvorian, A. D.; Rafalski, M.;
Kasireddy-Polam, P.; Wong, H.; Molski, T. F.; Zhang, G.; Li, Y.-W.; Lelas, S.; Peng,
Y.; McElroy, J. F.; Zaczek, R. C.; Taub, R. A.; Combs, A. P.; Gilligan, P. J.; Trainor, G.
L. J. Med. Chem. 2004, 47, 5783.
R2R3N
R1
Cl
N
v
N
N
N
N
N
Ar
N
N
Ar
Scheme 1. Reagents: (i) ArNHNH2, MeOH, Et3N; (ii) NaOH, EtOH, H2O; (iii) NaOEt,
EtOAc, EtOH; (iv) POCl3, dimethylaniline, CH3CN; (v) iPrNEt2, R2R3NH, CH3CN.
5. Chen, C.; Wilcoxen, K. M.; Huang, C. Q.; Xie, Y. F.; McCarthy, J. R.; Webb, T. R.;
Zhu, Y.-F.; Saunders, J.; Liu, X. J.; Chen, T. K.; Bozigian, H.; Grigoriadis, D. E. J.
Med. Chem. 2004, 43, 449.
6. Gilligan, P. J.; Clarke, T.; Liqi, H.; Lelas, S.; Li, Y.-W.; Heman, K.; Fitzgerald, L.;
Miller, K.; Zhang, G.; Marshall, A.; Krause, C.; McElroy, J. F.; Ward, K.; Zeller, K.;
Wong, H.; Bai, S.; Saye, J.; Grossman, S.; Zaczek, R.; Arneric, S. P.; Hartig, P.;
Robertson, D.; Trainor, G. J. Med. Chem. 2009, 52, 3084.
across the pH range, with only limited degradation at pH1.2 (51%
main band remaining after 14 days at 50 °C). Discussions with col-
leagues in our pharmaceutical sciences department confirmed that
this level of stability should not cause any issues in the develop-
ment of this compound.
Compound 35 was progressed into a rat pharmacokinetic study
to determine how in vitro metabolic stability would translate
in vivo (Table 4). Compound 35 exhibited an encouraging pharma-
cokinetic profile with moderate volume of distribution and clear-
ance suitable for further pre-clinical investigation.
Compounds were conveniently prepared from substituted aryl
hydrazines by the method described in Scheme 1. Condensation
of the hydrazine with the suitably substituted ethoxymethylidene-
malononitrile yielded the cyanopyrazole intermediate, which was
hydrolysed to the amide under basic conditions. Cyclisation to
the pyrazolopyrimidinone was followed by chlorination to give
the chloropyrimidine derivative, which was subsequently dis-
placed with an amine under basic conditions to give target com-
pounds such as 35.
In summary, introduction of the C,C-dicyclopropylmethylamine
group was instrumental in combining metabolic stability with
CRF-1 potency in this pyrazolopyrimidine template. This suggests
that in targets which poorly tolerate polar functionality, identify-
ing functional groups which display much higher metabolic stabil-
ity than would be expected from their lipophilicity can be an
effective strategy. Compound 35 has been identified as having an
improved balance of potency and in vitro metabolic stability rela-
tive to compound 6, and a pharmacokinetic profile suitable to sup-
port further progression of this compound. Further studies will be
reported in due course.
7. Di Fabio, R.; St-Denis, Y.; Sabbatini, F. M.; Andreotti, D.; Arban, R.; Bernasconi,
G.; Braggio, S.; Blaney, F. E.; Capelli, A. M.; Castiglioni, E.; Di Modugno, E.;
Donati, D.; Fazzolari, E.; Ratti, E.; Feriani, A.; Contini, S.; Gentile, G.; Ghirlanda,
D.; Provera, S.; Marchioro, C.; Roberts, K. L.; Mingardi, A.; Mattioli, M.; Nalin, A.;
Pavone, F.; Spada, S.; Trist, D. G.; Worby, A. J. Med. Chem. 2008, 51, 7370.
8. For recent reviews, see: (a) Tellew, J. E.; Zhiyong, L. Curr. Top. Med. Chem. 2008,
8, 506; (b) Chen, C. Curr. Med. Chem. 2006, 13, 1261; (c) Gilligan, P. J.; Li, Y.-W.
Curr. Opin. Drug Discov. Dev. 2004, 7, 487; (d) Kehne, J.; De Lombaert, S. Curr.
Drug Targets-CNS Neurol. Disord. 2002, 1, 467; (e) Gilligan, P. J.; Robertson, P. J.;
Zaczek, R. J. Med. Chem. 2000, 43, 1641.
9. Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Dis. 2007, 6, 881.
10. Gene, M.; Chen, Y. L.; Welch, W. M. Jr. European patent 691128, 1996.
11. Chen, Y. L.; Mansbach, R. L.; Winter, S. M.; Brooks, E.; Collins, J.; Corman, M. L.;
Dunaiskis, A. R.; Faraci, W. S.; Gallaschun, R. J.; Schmidt, A.; Schulz, D. W. J. Med.
Chem. 1997, 40, 1749.
12. CRF-1 potency is expressed as functional activity measured using CHO cells
(Cell Sciences SNB0000377) expressing recombinant human CRF-1 receptor
grown in DMEM:F12 (1:1) media containing 10% (V/V) Foetal Bovine Serum
(PAA), 400 lg/ml Geneticin (GIBCO-BRL 10131-027) and 1% (V/V) Glutamax in
a cell incubator at 37 °C, 5% CO2 to 70% confluence. FAC hCRF (10 nM) was
added with test compound to 10,000 cells/well in Phosphate Buffered Saline
containing 500 lM FAC IBMX. The functional response was measured using
DiscoveRx HitHunter cAMP II Assay kit (Amersham Biosciences—90-0034-03).
Each compound was tested multiple times using a 0.5 log serial dilution dose–
response with a top final assay concentration of 20 lM. The % response of the
test compound at different test doses were then fitted to a 4-parameter logistic
curve to determine the compound IC50. Ki values were determined from the
IC50 using the Cheng and Prussoff relationship and the EC50 for the agonist
dose–response curve which was determined on the same day.
13. Human liver microsome (HLM) and rat liver microsome (RLM) figures are
reported as intrinsic clearances (Clint) with units of lg/ml/mg of protein. This is
a measure of oxidative (Phase I) metabolic liability. Unpublished in-house
Pfizer experience suggests Clint figures of <30 are generally have a good chance
of translating to moderate to low in vivo clearance, and Clint figures of >70 are
likely to translate to rapid in vivo clearance.
Acknowledgements
14. The difference between human and rat microsomal stability in this case is
surprising. From unpublished in-house experience in these assays rat liver
microsomes generally show higher turn-over across chemotypes than human
liver microsomes. The high turnover in rat microsomes for this compound
suggests a possible atypical species difference in Cyp mediated metabolism for
compound 7.
15. Lowe, R. F.; Nelson, J.; Trunghau, N. D.; Crowe, P. D.; Pahuja, A.; McCarthy, J. R.;
Grigoriadis, D. E.; Conlon, P.; Saunders, J.; Chen, C.; Szabo, T.; Ta Kung, C.;
Bozigian, H. J. Med. Chem. 2005, 48, 1540.
We acknowledge Denise Harding, Laia Malet and Adam Sten-
nett for compound synthesis, Margaret Jackson, Nick Edmunds, Jo
Mulgrew, Graham Baker, David Winpenny, Pauline Carnell and Ra-
chel Russell for biological data and Joanne Phipps for ADME
studies.