KINETIC STUDIES OF ACENAPHTHENE OXIDATION CATALYZED BY N-HYDROXYPHTHALIMIDE
523
Table II Results of Oxidation of AcNph by O2 in the
Presence of NHPI at 75◦C and 1 atm in Chlorobenzene
2. Gambarotti, C.; Punta, C.; Recupero, F. Encyclopedia
of Reagents for Organic Synthesis; Wiley: Weinheim,
Germany, 2005.
3. (a) Minisci, F.; Recupero, F.; Pedulli, G. F.; Lucarini,
M. J Mol Catal A: Chem 2003, 204–205, 63–90; (b)
Minisci, F.; Punta, C.; Recupero, F. J Mol Catal A: Chem
2006, 251, 129–149.
Wi × 107 (M s−1
)
2.71 0.11
0.012 0.001
√
k /
p
k
t
√
kf/
k
t
5
0.2
kHꢁ (M−1 s−1
)
7.7 0.1
4. Ishii, Y.; Sakaguchi S. In Modern Oxidation Methods;
Backvall, J.-E., Eds.; Wiley-VCH: New York, 2004;
pp. 119.
According to the proposed kinetic model [33], the
rate of oxidation described by Eq. (20) is
5. Sheldon, R. A.; Arends, I. W. C. E. Adv Synth Catal
2004, 346, 1051–1071.
6. Ishii, Y.; Nakayama, K.; Takeno, M.; Sakaguchi, S.;
Iwahama, T.; Nishiyama, Y. J Org Chem 1995, 60, 3934–
3935.
− d[O2]/dt = kp·(Wi/2kt)1/2·[RH]
+kf·(Wi/2kt)1/2·[R2NOH]. (20)
where kp is the propagation rate constant, kt is the rate
constant of termination of the peroxyl radicals, Wi is
the rate of initiation, and kf is the rate constant for the
hydrogen atom abstraction from NHPI by the peroxyl
radical.
It is interesting to apply Eq. (20) to our kinetic data
for the oxidation of acenaphthene in the presence of
NHPI. On the basis of this equation, the slope of the
plot reporting –d[O2]/dt against [NHPI] will provide
kf(Wi/2kt)1/2. The results of acenaphthene oxidation
with the NHPI catalyst are listed in Table II.
7. Coseri, S.; Mendenhall, G. D.; Ingold, K. U. J Org Chem
2005, 70, 4629–4636.
8. Shibamoto, A.; Sakaguchi, S.; Ishii, Y. Org Process Res
Dev 2000, 4, 505–508.
9. Dashevskii, M. M. Atsenaphten (Acenaphthene);
Khimiya: Moscow, 1966; 459 pp.
10. Yang, G.; Zhang, Q.; Miao, H.; Tong, X.; Xu, J. Org Lett
2005, 7 (2), 263–266.
11. Tong, X.; Xu, J.; Miao, H. Adv Synth Catal 2005, 347,
1953–1957.
12. Weissberger, A.; Proskauer, E.; Riddick, J.; Toops,
E. Organic Solvents, Physical Properties and Meth-
ods of Purification; Interscience: New York, 1955,
518 pp.
The kt value is unknown, but from Table II it can
be seen that the reactivity of NHPI with the peroxyl
radical (kf) is larger than that of acenaphthene (kp).
13. Sharefkin, J. G.; Saltzmann, H. Org Synth 1973, 5, 660–
663.
14. Schwartz, M. P.; Halter, R. J.; McMahon, R. J.; Hamers,
R. J. J Phys Chem B 2003, 107(1), 224–228.
15. Orlinska, B. Tetrahedron Lett 2010, 51, 4100–4102.
16. Coseri, S. Catal Rev 2009, 51 (2), 218–292.
17. Recupero, F.; Punta, C. Chem Rev 2007, 107, 3800–
3842.
18. Saha B.; Koshino, N.; Espenson, J. H. J Phys Chem A
2004, 108, 425–431.
19. Falcon, H.; Campos-Martin, J. M.; Fierro, J. L. G. Catal
Commun 2010, 12, 5–8.
20. Nechab M.; Einhorn, C.; Einhorn, J. Chem Commun
2004, 1500–1501.
21. Amorati, R.; Lucarini, M.; Mugnaini, V. J Org Chem
2003, 68 (5), 1747–1754.
22. Opeida, I. A.; Kompanets, M. A.; Kushch O.
V.; Yastrebova, E. G. Pet Chem 2009, 49 (5),
389–392.
23. Tong, X.; Xu, J.; Miao, H. Tetrahedron 2007, 63, 7634–
7639.
CONCLUSIONS
We have developed metal-free acenaphthene oxidation
catalyzed by NHPI. The developed catalytic system al-
lows obtaining the desired hydroperoxide in high yield
by the oxidation of the acenaphthene. We also sug-
gested a possible mechanism of this catalytic method,
which undergoes a radical process. Kinetic studies car-
ried out to investigate the catalytic behavior of NHPI
on the oxidation of acenaphthene are consistent with a
simple kinetic model.
The H-abstraction rate constant and KIE for the re-
action of PINO with acenaphthene are determined. The
value of KIE is 11.7. This finding further supports that
quantum mechanical tunneling plays a role in the hy-
drogen abstraction of the PINO radicals. The activation
parameters are determined for this reaction.
24. Kolyakina, E. V.; Grishin, D. F. Russ Chem Rev 2009,
78 (6), 535–568.
25. Coseri, S. J Phys Org Chem 2009, 22, 397–402.
26. Opeida, I. A.; Kompanets, M. A.; Kushch, O. V.;
Matvienko, A. G. Theor Exp Chem 2010, 46 (2), 107–
111.
27. Koshino, N.; Saha, B.; Espenson, J. H. J Org Chem 2003,
68, 9364–9370.
BIBLIOGRAPHY
1. (a) Ishii, Y.; Sakaguchi, S. Catal Surv Jpn 1999, 3, 27–
35; (b) Ishii, Y.; Sakaguchi, S.; Iwahama, T. Adv Synth
Catal 2001, 343, 393–427.
International Journal of Chemical Kinetics DOI 10.1002/kin.20790