ACS Chemical Neuroscience
Research Article
analyzed by one-way ANOVA followed by Tukey’s multiple
comparison test using GraphPad Prism.
(4) Schaaf, C. P. (2014) Nicotinic acetylcholine receptors in human
genetic disease. Genet. Med. 16 (9), 649−656.
(5) Jensen, A. A., Frolund, B., Liljefors, T., and Krogsgaard-Larsen, P.
(2005) Neuronal nicotinic acetylcholine receptors: structural reve-
lations, target identifications, and therapeutic inspirations. J. Med.
Chem. 48 (15), 4705−4745.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis and characterization of alkyne and 1,2,3-triazoles.
Sequence alignment of human α7-nAChR with human and
mouse 5HT3A receptors (Figure S1). IND, PPRD, and QND
series dose−response curve of α4β2-nAChRs and 5HT3A
receptors (Figures S2−S10). The Supporting Information is
(6) Gaimarri, A., Moretti, M., Riganti, L., Zanardi, A., Clementi, F.,
and Gotti, C. (2007) Regulation of neuronal nicotinic receptor traffic
and expression. Brain Res. Rev. 55 (1), 134−143.
(7) Lippiello, P., Bencherif, M., Hauser, T., Jordan, K., Letchworth, S.,
and Mazurov, A. (2007) Nicotinic receptors as targets for therapeutic
discovery. Expert Opin. Drug Discovery 2 (9), 1185−1203.
(8) Taly, A., Corringer, P. J., Guedin, D., Lestage, P., and Changeux,
J. P. (2009) Nicotinic receptors: allosteric transitions and therapeutic
targets in the nervous system. Nat. Rev. Drug Discovery 8 (9), 733−750.
(9) Briggs, C. A., Anderson, D. J., Brioni, J. D., Buccafusco, J. J.,
Buckley, M. J., Campbell, J. E., Decker, M. W., Donnelly-Roberts, D.,
Elliott, R. L., Gopalakrishnan, M., Holladay, M. W., Hui, Y. H.,
Jackson, W. J., Kim, D. J., Marsh, K. C., O’Neill, A., Prendergast, M. A.,
Ryther, K. B., Sullivan, J. P., and Arneric, S. P. (1997) Functional
characterization of the novel neuronal nicotinic acetylcholine receptor
ligand GTS-21 in vitro and in vivo. Pharmacol., Biochem. Behav. 57 (1−
2), 231−241.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
Study conception and design: K.A., V.V.F., O.V., and P.T..
Acquisition of data: K.A. Analysis and interpretation of data:
K.A. Drafting of manuscript: K.A. Critical revision: K.A., V.V.F.,
O.V., and P.T.
■
(10) Hibbs, R. E., Sulzenbacher, G., Shi, J., Talley, T. T., Conrod, S.,
Kem, W. R., Taylor, P., Marchot, P., and Bourne, Y. (2009) Structural
determinants for interaction of partial agonists with acetylcholine
binding protein and neuronal alpha7 nicotinic acetylcholine receptor.
EMBO J. 28 (19), 3040−3051.
(11) Wallace, T. L., Callahan, P. M., Tehim, A., Bertrand, D.,
Tombaugh, G., Wang, S., Xie, W., Rowe, W. B., Ong, V., Graham, E.,
Terry, A. V., Jr., Rodefer, J. S., Herbert, B., Murray, M., Porter, R.,
Santarelli, L., and Lowe, D. A. (2011) RG3487, a novel nicotinic
alpha7 receptor partial agonist, improves cognition and sensorimotor
gating in rodents. J. Pharmacol. Exp. Ther. 336 (1), 242−253.
(12) Toyohara, J., and Hashimoto, K. (2010) alpha7 Nicotinic
Receptor Agonists: Potential Therapeutic Drugs for Treatment of
Cognitive Impairments in Schizophrenia and Alzheimer’s Disease.
Open Med. Chem. J. 4, 37−56.
(13) Vicens, P., Ribes, D., Torrente, M., and Domingo, J. L. (2011)
Behavioral effects of PNU-282987, an alpha7 nicotinic receptor
agonist, in mice. Behav Brain Res. 216 (1), 341−348.
(14) Mazurov, A., Hauser, T., and Miller, C. H. (2006) Selective
alpha7 nicotinic acetylcholine receptor ligands. Curr. Med. Chem. 13
(13), 1567−1584.
(15) Radek, R. J., Robb, H. M., Stevens, K. E., Gopalakrishnan, M.,
and Bitner, R. S. (2012) Effects of the novel alpha7 nicotinic
acetylcholine receptor agonist ABT-107 on sensory gating in DBA/2
mice: pharmacodynamic characterization. J. Pharmacol. Exp. Ther. 343
(3), 736−745.
(16) Ghiron, C., Haydar, S. N., Aschmies, S., Bothmann, H.,
Castaldo, C., Cocconcelli, G., Comery, T. A., Di, L., Dunlop, J., Lock,
T., Kramer, A., Kowal, D., Jow, F., Grauer, S., Harrison, B., La Rosa, S.,
Maccari, L., Marquis, K. L., Micco, I., Nencini, A., Quinn, J.,
Robichaud, A. J., Roncarati, R., Scali, C., Terstappen, G. C., Turlizzi,
E., Valacchi, M., Varrone, M., Zanaletti, R., and Zanelli, U. (2010)
Novel alpha-7 nicotinic acetylcholine receptor agonists containing a
urea moiety: identification and characterization of the potent, selective,
and orally efficacious agonist 1-[6-(4-fluorophenyl)pyridin-3-yl]-3-(4-
piperidin-1-ylbutyl) urea (SEN34625/WYE-103914). J. Med. Chem. 53
(11), 4379−4389.
(17) Horenstein, N. A., Leonik, F. M., and Papke, R. L. (2008)
Multiple pharmacophores for the selective activation of nicotinic
alpha7-type acetylcholine receptors. Mol. Pharmacol. 74 (6), 1496−
1511.
(18) Bunnelle, W. H., Dart, M. J., and Schrimpf, M. R. (2004) Design
of ligands for the nicotinic acetylcholine receptors: the quest for
selectivity. Curr. Top Med. Chem. 4 (3), 299−334.
Funding
This work was supported by Thailand Research Fund (TRF)
through the Royal Golden Jubilee Ph.D. Program (Grant No.
PHD/0113/2551) to K.A. and O.V., the Office of the High
Education Commission and Mahidol University under the
National Research Universities to O.V., National Institutes of
Health GM18360 to P.T., and GM087620 to V.V.F.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge Dr. Ida Drier, Dr. Rakesh Sit, and Dr. James
Oakdale for providing some synthesis materials and advice, and
Dr. Akos Nemecz for suggestions on the pharmacological
evaluation.
ABBREVIATIONS
■
5HT, 5-hydroxytryptamine; AChBP, acetylcholine binding
protein; aCSF, artificial cerebrospinal fluid; AD, Alzheimer’s
disease; BBB, blood-brain barrier; CNiFERs, cell based
neurotransmitter fluorescent engineered reporters; CuAAC,
copper-catalyzed azide−alkyne cycloaddition; DMEM, Dulbec-
co’s modified Eagle’s medium; DR, dose−response; ESI,
electrospray ionization; FRET, fluorescence resonance energy
transfer; FTIR, Fourier transform infrared spectroscopy; HBSS,
Hank’s balanced salt solution; HRMS, high resolution mass
spectrometry; LC-MS, liquid chromatography mass spectrom-
etry; LGIC, ligand-gated ion channel; Ls, Lymnaea stagnalis;
MLA, methyllycaconitine; nAChR, nicotinic acetylcholine
receptor; NMR, nuclear magnetic resonance; RBA, radioligand
binding assay; SPA, signal proximity assay
REFERENCES
■
(1) Gotti, C., and Clementi, F. (2004) Neuronal nicotinic receptors:
from structure to pathology. Prog. Neurobiol. 74 (6), 363−396.
(2) Dani, J. A., and Bertrand, D. (2007) Nicotinic acetylcholine
receptors and nicotinic cholinergic mechanisms of the central nervous
system. Annu. Rev. Pharmacol. Toxicol. 47, 699−729.
(3) Gotti, C., Zoli, M., and Clementi, F. (2006) Brain nicotinic
acetylcholine receptors: native subtypes and their relevance. Trends
Pharmacol. Sci. 27 (9), 482−491.
M
ACS Chem. Neurosci. XXXX, XXX, XXX−XXX