53.6, 46.8, 29.7, 28.6, 27.5; EI-TOF-LCMS [M + H]+ C23H23N2O5
requires m/z 407.1607, found 407.1626.
Chem. Commun., 2006, 2332–2334; (e) D. Gauthier, P. Baillargeon,
M. Drouin and Y. L. Dory, Angew. Chem., Int. Ed., 2001, 40, 4635–
4638.
5 (a) S. E. Paramonov, H.-W. Jun and J. D. Hartgerink, J. Am. Chem.
Soc., 2006, 128, 7291–7298; (b) J. Hentschel and H. G. Bo¨rner, J. Am.
Chem. Soc., 2006, 128, 14142–14149.
6 (a) M. Reches and E. Gazit, Science, 2003, 300, 625–627; (b) M. Yemini,
M. Reches, J. Rishpon and E. Gazit, Nano Lett., 2005, 5, 183–186; (c) N.
Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit and I.
Rousso, Nano Lett., 2005, 5, 1343–1346; (d) O. Carney, D. E. Shalev
and E. Gazit, Nano Lett., 2006, 6, 1594–1597; (e) M. Reches and E.
Gazit, Nat. Nanotechnol., 2006, 1, 195–200.
7 (a) K. Lu, J. Jacob, P. Thiyagarajan, V. P. Conticello and D. G. Lynn,
J. Am. Chem. Soc., 2003, 125, 6391–6393; (b) J. Dong, J. E. Shokes,
R. A. Scott and D. G. Lynn, J. Am. Chem. Soc., 2006, 128, 3540–
3542; (c) K. Lu, L. Guo, A. K. Mehta, W. S. Childers, S. N. Dublin, S.
Skanthakumar, V. P. Conticello, P. Thiyagarajan, R. P. Apkarian and
D. G. Lynn, Chem. Commun., 2007, 2729–2731; (d) A. K. Mehta, K.
Lu, W. S. Childers, Y. Liang, S. N. Dublin, J. Dong, J. P. Snyder, S. V.
Pingali, P. Thiyagarajan and D. G. Lynn, J. Am. Chem. Soc., 2008, 130,
9829–9835 (correction to reference 7d: J. Am. Chem. Soc., 2009, 131,
8333).
8 (a) A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick,
T. C. B. McLeish, A. N. Semenov and N. Boden, Proc. Natl. Acad.
Sci. U. S. A., 2001, 98, 11857–11862; (b) D. M. Marini, W. Hwang,
D. A. Lauffenburger, S. Zhang and R. D. Kamm, Nano Lett., 2002,
2, 295–299; (c) C. W. G. Fishwick, A. J. Beevers, L. M. Carrick, C. D.
Whitehouse, A. Aggeli and N. Boden, Nano Lett., 2003, 3, 1475–1479.
9 (a) M. van Dijk, K. Mustafa, A. C. Dechesne, C. F. van Nostrum, W. E.
Hennink, D. T. S. Rijkers and R. M. J. Liskamp, Biomacromolecules,
2007, 8, 327–330; (b) M. van Dijk, M. L. Nollet, P. Weijers, A. C.
Dechesne, C. F. van Nostrum, W. E. Hennink, D. T. S. Rijkers and
R. M. J. Liskamp, Biomacromolecules, 2008, 9, 2834–2843.
Azido-Lys(Boc)-OH (5). This compound was synthesized ac-
cording to the procedure of Lundquist and Pelletier,12 starting with
commercially available H-Lys(Boc)-OH (4) on a 12 mmol scale and
compound 5 was obtained as a pale yellow oil in 90% yield. Rf
25
0.57 (CHCl3–MeOH–AcOH 95 : 18 : 3 v/v/v); [a]D -20.9 (c 1.04
CHCl3) (lit.,12 -19.0 (c 1.0 CHCl3)); 1H-NMR (300 MHz, CDCl3)
d = 10.45 (broad s, 1H, COOH), 4.71 (m, 1H, urethane eNH),
3.91 (m, 1H, aCH), 3.13 (m, 2H, eCH2), 1.84 (m, 2H, bCH2), 1.52
(m, 4H, gCH2/dCH2 (2 ¥ 2H), 1.44 (s, 9H, (CH3)3 Boc); 13C-NMR
(75.5 MHz, CDCl3) d = 174.4, 156.3, 79.7, 61.8, 40.2, 30.9, 29.4,
28.4, 22.8.
Microwave-assisted polymerization reaction of N3-Lys-Leu-Val-
Phe-Phe-Ala-Glu-propargyl amide. Peptide monomer 1 (40 mg,
43.7 mmol) was dissolved in N2-purged DMSO (2 mL) and CuOAc
(3 mg, 24.6 mmol, 0.56 equiv.) was added. The reaction mixture
was placed in the microwave reactor and irradiated for 30 min
◦
at 100 C. The clear solution was transformed into a turbid gel.
The gel was dissolved in an additional amount of DMSO (3 mL)
and the solution was concentrated in vacuo (SpeedVac) to obtain
a solid pellet. The greenish solid was redissolved in CH3CN–H2O
(5 mL, 1 : 1 v/v) and lyophilized. After purification by HPLC, two
off-white peptides could be isolated, identified and characterized
by analytical HPLC, FTIR and MALDI-TOF analysis.33
10 (a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057–3064; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B.
Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596–2599.
Cyclic peptide (8). This peptide, the cyclic monomer, was
isolated in 15% yield (6 mg, 6.6 mmol). Rt 19.6 min; nmax/cm-1
1672 (C O), 1548; MALDI-TOF C46H65N11O9 requires 915.497,
found m/z [M + H]+monoisotopic 916.672, [M + Na]+monoisotopic 938.627.
11 (a) For a selection of general reviews, see: H. C. Kolb and K. B.
Sharpless, Drug Discovery Today, 2003, 8, 1128–1137; (b) V. D. Bock,
H. Hiemstra and J. H. van Maarseveen, Eur. J. Org. Chem., 2006, 51–68;
(c) M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952–3015;
(d) for reviews with an emphasis on polymer and materials science,
see: J.-F. Lutz, Angew. Chem., Int. Ed., 2007, 46, 1018–1025; (e) W. H.
Binder and R. Sachsenhofer, Macromol. Rapid Commun., 2007, 28, 15–
54; (f) W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun.,
2008, 29, 952–981; (g) J. A. Johnson, M. G. Finn, J. T. Koberstein and
N. J. Turro, Macromol. Rapid Commun., 2008, 29, 1052–1072; (h) B.
Le Droumaguet and K. Velonia, Macromol. Rapid Commun., 2008, 29,
1073–1089; (i) for reviews that describe the general synthetic utility of
click chemistry across the fields: H. C. Kolb, M. G. Finn and K. B.
Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004–2021; (j) M. V. Gil,
=
Cyclic peptide (9). This peptide, the cyclic dimer, was isolated
in 33% yield (13 mg, 7.1 mmol). Rt 19.1 min; nmax/cm-1 1687
=
and 1635 (C O), 1542; MALDI-TOF C92H130N22O18 requires
1830.994, found m/z [M + H]+
1831.542.
monoisotopic
Acknowledgements
These investigations were supported by the Council for Chemical
Sciences of the Netherlands Organization for Scientific Research
(CW-NWO). Hans Hilbers (Medicinal Chemistry & Chemical
Biology) is gratefully acknowledged for his help with the mod-
eling studies. Dr George Posthuma, Marc van Peski and Rene
Scriwanek (Center for Electron Microscopy, UMC Utrecht) are
acknowledged for their help with the TEM measurements and
photographic artwork.
´
M. J. Are´valo and O. Lo´pez, Synthesis, 2007, 1589–1620; (k) J. E. Moses
and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249–1262.
12 J. T. Lundquist, IV and J. C. Pelletier, Org. Lett., 2001, 3, 781–784.
13 (a) P. B. Alper, S.-C. Hung and C.-H. Wong, Tetrahedron Lett., 1996,
37, 6029–6032; (b) P. T. Nyffeler, C.-H. Liang, K. M. Koeller and C.-H.
Wong, J. Am. Chem. Soc., 2002, 124, 10773–10778.
14 K. Barlos, D. Gatos, S. Kapolos, G. Papahotiu, W. Scha¨fer and Y.
Wenqing, Tetrahedron Lett., 1989, 30, 3947–3950.
15 J. Meienhofer, M. Waki, E. P. Heimer, T. J. Lambros, R. C. Makofske
and C.-D. Chang, Int. J. Peptide Protein Res., 1979, 13, 35–42.
16 G. B. Fields and R. L. Noble, Int. J. Peptide Protein Res., 1990, 35,
161–214.
References and notes
1 S. Zhang, Nat. Biotechnol., 2003, 21, 1171–1178.
17 S. Punna, J. Kuzelka, Q. Wang and M. G. Finn, Angew. Chem., Int.
2 (a) X. Gao and H. Matsui, Adv. Mater., 2005, 17, 2037–2050; (b) D. N.
Woolfson and M. Ryadnov, Curr. Opin. Chem. Biol., 2006, 10, 559–567;
(c) R. V. Ulijn and A. M. Smith, Chem. Soc. Rev., 2008, 37, 664–675;
(d) I. Cherny and E. Gazit, Angew. Chem., Int. Ed., 2008, 47, 4062–4069.
3 (a) M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee and N.
Khazanovich, Nature, 1993, 366, 324–327; (b) for a review see: D. T.
Bong, T. D. Clark, J. R. Granja and M. R. Ghadiri, Angew. Chem.,
Int. Ed., 2001, 40, 988–1011; (c) N. Ashkenasy, W. S. Horne and M. R.
Ghadiri, Small, 2006, 2, 99–102.
Ed., 2005, 44, 2215–2220.
18 (a) S. Chandrasekhar, C. L. Rao, C. Nagesh, C. R. Reddy and B.
Sridhar, Tetrahedron Lett., 2007, 48, 5869–5872; (b) R. A. Turner, A. G.
Olivier and R. S. Lokey, Org. Lett., 2007, 9, 5011–5014;(c) V. Gonsalves,
B. Gautier, A. Regazzetti, P. Coric, S. Bouaziz, C. Garbay, M. Vidal
and N. Inguimbert, Bioorg. Med. Chem. Lett., 2007, 17, 5590–5594;
(d) V. D. Bock, D. Speijer, H. Hiemstra and J. H. van Maarseveen,
Org. Biomol. Chem., 2007, 5, 971–975; (e) Y. L. Angell and K. Burgess,
Chem. Soc. Rev., 2007, 36, 1674–1689.
4 (a) T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev., 2005,
105, 1401–1443; (b) C. H. Go¨rbitz, Chem.–Eur. J., 2001, 7, 5153–5159;
(c) C. H. Go¨rbitz, New J. Chem., 2003, 27, 1789–1793; (d) C. H. Go¨rbitz,
19 This mechanism has recently been disproved by new experimental data,
see: R. Jagasia, J. M. Holub, M. Bollinger, K. Kirshenbaum and M. G.
Finn, J. Org. Chem., 2009, 74, 2964–2974.
4524 | Org. Biomol. Chem., 2009, 7, 4517–4525
This journal is
The Royal Society of Chemistry 2009
©