A. Kumar et al. / Tetrahedron Letters 50 (2009) 6526–6530
6529
T.; Mochizuchi, M. Bioorg. Med. Chem. Lett. 1999, 9, 2959; (d) Da Ros, T.; Prato,
M.; Novello, F.; Maggini, M.; Banfi, E. J. Org. Chem. 1996, 61, 9070.
2. (a) Tanimoto, S.; Sakai, S.; Matsumura, S.; Takahashi, D.; Toshima, K. Chem.
Commun. 2008, 5767; (b) Marcorin, G.; Da Ros, T.; Castellano, S.; Stefancich, G.;
Borin, I.; Miertus, S.; Prato, M. Org. Lett. 2000, 2, 3955; (c) Friedman, S. H.;
Ganapathi, P. S.; Rubin, Y.; Kenyon, G. L. J. Med. Chem. 1998, 41, 2424; (d)
Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkins, C.; Friedman, S. H.;
DeCamp, D. L.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510.
3. (a) Huang, S. T.; Ho, C. S.; Lin, C. M.; Fang, H. W.; Peng, Y. X. Bioorg. Med. Chem.
2008, 16, 8619; (b) Huang, S. T.; Liao, J. S.; Fang, H. W.; Lin, C. M. Bioorg. Med.
Chem. Lett. 2008, 18, 99.
4. (a) Jensen, A. W.; Wilson, S. R.; Schuster, D. I. Bioorg. Med. Chem. 1996, 4, 767;
(b) Da Ros, T.; Prato, M. Chem. Commun. 1999, 663; (c) Wilson, S. R. In The
Fullerene Handbook; Kadish, K., Ruoff, R., Eds.; Wiely: New York, 2000; pp 437–
465.
5. Kumar, A.; Menon, S. K. Eur. J. Med. Chem. 2009, 44, 2178.
6. Kumar, A.; Patel, G.; Menon, S. K. Chem. Biol. Drug. Des. 2009, 73, 553.
7. (a) Wang, D.; Sun, L.; Liu, W.; Chang, W.; Gao, X.; Wang, Z. Environ. Sci.
Technol. 2009, 43, 5825; (b) Zhao, X. J. Phys. Chem. C 2008, 112, 8898; (c)
Ikeda, A.; Doi, Y.; Hashizume, M.; Kikuchi, J.; Konishi, T. J. Am. Chem. Soc.
2007, 129, 4140; (d) Liu, Y.; Zhao, Y. L.; Chen, Y.; Liang, P.; Li, L.
Tetrahedron Lett. 2005, 46, 2507; (e) Boutorine, A. S.; Takasugi, M.; Hélène,
C.; Tokoyuma, H.; Isobe, H.; Nakamura, E. Angew. Chem., Int. Ed. Engl.
1994, 33, 2462; (f) Yamakoshi, Y. N.; Yagami, T.; Sueyoshi, S.; Miyata, N. J.
Org. Chem. 1996, 61, 7236; (g) Tokuyama, H.; Yamago, S.; Nakamura, E. J.
Am. Chem. Soc. 1993, 115, 7918; (h) Ikeda, A.; Hatano, T.; Kawaguchi, M.;
Suenaga, H.; Shinkai, S. Chem. Commun. 1999, 1403.
8. (a) Lof, R. W.; van Veenendaal, M. A. K. B.; Jonkman, H. T.; Sawatzky, G. A. Phys.
Rev. Lett. 1992, 68, 3924; (b) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.;
Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Phys. Chem.
1991, 95, 11; (c) Dimitrijevic, N. M.; Kamat, P. V. J. Phys. Chem. 1992, 96, 4811;
(d) Fraelich, M. R.; Weisman, R. B. J. Phys. Chem. 1993, 97, 11145.
9. (a) Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.;
Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. Nano
Lett. 2004, 4, 1881; (b) Dhawan, A.; Taurozzi, J. S.; Pandey, A. K.; Shan, W. Q.;
Miller, S. M.; Hashsham, S. A.; Tarabara, V. V. Environ. Sci. Technol. 2006, 40,
7394; (c) Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.;
Vranjes-Djuric, S.; Mirkovic, M.; Dramicanin, M.; Harhaji, L.; Raicevic, N.;
Nikolic, Z.; Trajkovic, V. Toxicol. Sci. 2006, 91, 173.
Figure 3. Photocleavage of pBR322 supercoiled DNA by fullerene–lysine conjugate
3
analyzed by agarose gel electrophoresis. [3] = 1 ꢁ 10ꢂ5 M, [1] = 1 ꢁ 10ꢂ5 M,
[NADH] = 1 ꢁ 10ꢂ3 M.
the interactions between C60 and DNA since DNA bases are hydro-
phobic, smaller the size of aggregated particles more is the effi-
ciency in photoinduced DNA cleavage. Hence dynamic light
scattering (DLS) experiment was carried out to analyze the size
of the aggregated particles of 3 if any. The concentration for DLS
analysis was taken as 1.0 ꢁ 10ꢂ5 M, the same that was used for
DNA photocleavage. The average size of aggregated particles were
found to be 20 nm which is much smaller as compared to the
aggregates of
c-cyclodextrin-bicapped C60 (CD/C60) reported by
Wang et al.7a In order to understand the mode of DNA cleavage,
the same experiments of gel electrophoresis were carried out in
the presence of sodium azide and L-histidine, singlet oxygen scav-
engers. No change in DNA cleavage was observed in the presence of
either of these two singlet oxygen scavengers. However the cleav-
ing activity was clearly inhibited by the addition of superoxide dis-
10. Kadish, K. M.; Ruoff, R. S.. Fullerenes: Chemistry, Physics, and Technology; Wiley:
New York, 2000.
11. (a) Yamakoshi, Y. N.; Yagami, T.; Fukuhara, K.; Sueyoshi, S.; Miyata, N. J. Chem.
Soc., Chem. Commun. 1994, 517; (b) Atwood, J. L.; Koutsantonis, G. A.; Raston, C.
L. Nature 1994, 368, 229; (c) Andersson, T.; Nilsson, K.; Sundahl, M.; Westman,
G.; Wennerstrçm, O. J. Chem. Soc., Chem. Commun. 1992, 604.
Åꢂ
mutase (SOD), which quenches O2Åꢂ. This result suggested that O2
is a key intermediate for DNA-cleaving activity of 3 in the presence
of NADH.
12. Chiang, L. Y.; Bhonsle, J. B.; Wang, L.; Shu, S. F.; Chang, T. M.; Hwu, J. R.
Tetrahedron 1996, 52, 4963.
In conclusion a novel fullerene–lysine conjugate has been syn-
thesized and was found to cleave the supercoiled DNA under phot-
oirradiation in the presence of NADH. Although the mechanism of
action is not very clear, superoxide radical generated on photoirra-
diation seems to be the reactive oxygen species (ROS) behind the
DNA cleavage. This work opens up interesting prospects in the field
of DNA cleavage by this novel class of fullerene-based amino acids.
13. (a) Burley, G. A.; Keller, P. A. F.; Pyne, S. G.; Ball, E. J. Org. Chem. 2002, 67,
8316; (b) Maggini, M.; Scorrano, G.; Bianco, A.; Toniolo, C.; Sijbesma, R. P.;
Wudl, F.; Prato, M. J. Chem. Soc., Chem. Commun. 1994, 305; (c) Gan, L.;
Zhou, D.; Luo, C.; Tan, H.; Huang, C.; Lu, M.; Pan, J.; Wu, Y. J. Org. Chem.
1996, 61, 1954; (d) An, Y.-Z.; Anderson, J. L.; Rubin, Y. J. Org. Chem. 1993,
58, 4799; (e) Pellarini, F.; Pantarotto, D.; Da Ros, T.; Giangaspero, A.; Tossi,
A.; Prato, M. Org. Lett. 2001, 3, 1845; (f) Pantarottoab, D.; Tagmatarchisa,
N.; Bianco, A. Mini-Rev. Med. Chem. 2004, 4, 805; (g) Hu, Z.; Guan, W. C.;
Wang, W. Cell Biol. Int. 2007, 31, 798; (h) Pantarotto, D.; Bianco, A.;
Pellarini, F. J. Am. Chem. Soc. 2002, 124, 12543; (i) Yang, J. Z.; Alemany, L.
B.; Driver, J. Chem. Eur. J. 2007, 13, 2530; (j) Zhang, J.; Wang, Y. X.; Shao,
Y. Y.; Li, Z. J.; Yang, X. L. Chin. Chem. Lett. 2008, 19, 1159.
Acknowledgements
14. Saito, I.; Takayama, M.; Kawanishi, S. J. Am. Chem. Soc. 1995, 117, 5590.
A.K. would like to thank the Council of Scientific and Industrial
Research (CSIR), New Delhi for Senior Research Fellowship. Finan-
cial assistance from UGC, New Delhi is also gratefully acknowl-
edged. We would also like to thank Shiva S. Chettiar, Zoology
Department, Gujarat University for gel electrophoresis studies.
15. Synthesis of compound 3. The N-protected fulleropyrrolidine
2 (30 mg,
0.03 mmol) was dissolved in a 1:1 mixture of toluene/trifluoroacetic acid and
stirred for 12 h. The reaction was monitored by TLC (SiO2; toluene/propanol,
9:1). After completion of the deprotection, the solvents were evaporated, and
some MeOH was added and evaporated again. The residue was taken up in
CH2Cl2, and the solution was added dropwise to excess hexane. The
precipitated solid was separated by centrifugation, washed with
a small
amount of Et2O and then dried under high vacuum to obtain 3 as brownish
solid product. Yield 25 mg (83.3%) mp 251 °C; Anal. Calcd for C78O4H24N3F3: C,
83.35; H, 2.15; N, 3.74. Found: C, 83.26; H, 2.14; N, 3.76; IR(KBr; cmꢂ1) 528
(C60), 1600 (CH@N), 1659 (C@O stretching), 3257 (NH stretching), 3497 (NH
stretching); 1H NMR (400 MHz, DMSO-d6, Me4Si, 298 K) d 1.50–1.97 (m, 8H, –
CH2–), 2.82 (3H, s, N–CH3), 4.1(s, 1H, –CH–), 4.45 (d, 2J = 9.3 Hz, 1H, HHC–N–),
4.90 (s, 1H, HC–N–), 5.25 (d, 2J = 9.3 Hz, 1H, HHC–N–), 7.16 (d, 3J = 8.0 Hz, 2H,
ArH), 7.57(d, 3J = 8.0 Hz, 2H, ArH), 7.80 (s, 3H, NH3þ), 8.23 (s, 1H, CH@N),
Supplementary data
Supplementary data (general methods, synthetic procedure and
characterization data of intermediates 1 and 2. A copy of FAB-MS
and FTIR spectra of 3, dynamic light scattering data of compound
3. General method for DNA cleavage, effect of photoirradiation
time, concentration of 3 and concentration of NADH on DNA cleav-
age) associated with this article can be found, in the online version,
12.1(s, 1H, –COOH) ppm; 13C NMR(125 MHz, DMSO-d6, Me4Si, 298 K)
d
177.1(1C, –COO), 164.3(1C, CH@N), 154.2(2C, C60), 153.4(2C, C60), 151.6(2C,
C60), 150.7(2C, C60), 150.5(2C, C60), 149.6(2C, C60), 149.2(2C, C60), 148.9(2C,
C60), 148.3(2C, C60), 147.7(2C, C60), 147.4(2C, C60), 146.9(2C, C60) 146.2(2C, C60),
145.9(4C, C60), 145.8(2C, C60), 145.6(2C, C60), 145.4(2C, C60), 144.6(2C, C60),
143.2(1C, ArCq), 142.8(2C, C60), 142.2(2C, C60), 141.8(2C, C60), 141.7(2C, C60),
141.5(2C, C60), 140.7(2C, C60), 139.8(1C, ArCq), 139.5(2C, C60), 138.9(2C, C60),
136.4(2C, C60), 135.9(2C, C60), 135.9(2C, C60), 130.1(2C, ArCH), 129.8(2C, ArCH),
83.5(1C, NCH of the pyrrolidine ring), 75.2(1C, sp3 C– of C60), 69.1(1C, NCH2 of
pyrrolidine ring), 68.4(1C, sp3 C– of C60), 67.9 (1C, –CH–COOH), 66.5 (1C, –CH2–
NH3þ), 44.8(1C, –CH2), 42.3(1C, CH3 linked to N of the pyrrolidine ring),
References and notes
1. (a) Spesia, M. B.; Milanesio, A. E.; Durantini, E. N. Eur. J. Med. Chem. 2008, 43,
853; (b) Bosi, S.; Da Ros, T.; Castellano, S.; Banfi, E.; Prato, M. Bioorg. Med. Chem.
Lett. 2000, 10, 1043; (c) Mashino, T.; Okuda, K.; Hirota, T.; Hirobe, M.; Nagano,